Antiviral potential of green synthesized silver nanoparticles of lampranthus coccineus and malephora lutea

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorHaggag E.G.
dc.contributor.authorElshamy A.M.
dc.contributor.authorRabeh M.A.
dc.contributor.authorGabr N.M.
dc.contributor.authorSalem M.
dc.contributor.authorYoussif K.A.
dc.contributor.authorSamir A.
dc.contributor.authorBin Muhsinah A.
dc.contributor.authorAlsayari A.
dc.contributor.authorAbdelmohsen U.R.
dc.contributor.otherDepartment of Pharmacognosy
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherHelwan University
dc.contributor.otherCairo
dc.contributor.other11795
dc.contributor.otherEgypt; Department of Pharmacognosy
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherCairo University
dc.contributor.otherCairo
dc.contributor.other11562
dc.contributor.otherEgypt; Department of Pharmacognosy
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherModern University for Technology and Information
dc.contributor.otherCairo
dc.contributor.otherEgypt; Department of Pharmaceutical Chemistry
dc.contributor.otherOctober University for Modern Sciences and Arts (Msa)
dc.contributor.otherCairo
dc.contributor.otherEgypt; Department of Pharmacognosy
dc.contributor.otherCollege of Pharmacy
dc.contributor.otherKing Khalid University
dc.contributor.otherAbha
dc.contributor.other61441
dc.contributor.otherSaudi Arabia; Department of Pharmacognosy
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherMinia University
dc.contributor.otherMinia
dc.contributor.otherEgypt
dc.date.accessioned2020-01-09T20:40:46Z
dc.date.available2020-01-09T20:40:46Z
dc.date.issued2019
dc.descriptionScopus
dc.description.abstractBackground: Viral and microbial infections constitute one of the most important life-threatening problems. The emergence of new viral and bacterial infectious diseases increases the demand for new therapeutic drugs. Purpose: The objective of this study was to use the aqueous and hexane extracts of Lampranthus coccineus and Malephora lutea F. Aizoaceae for the synthesis of silver nanoparticles, and to investigate its possible antiviral activity. In addition to the investigation of the phytochemical composition of the crude methanolic extracts of the two plants through UPLC-MS metabolomic profiling, and it was followed by molecular docking in order to explore the chemical compounds that might contribute to the antiviral potential. Methods: The formation of SNPs was further confirmed using a transmission electron microscope (TEM), UV-Visible spectroscopy and Fourier transform infrared spectroscopy. The antiviral activity of the synthesized nanoparticles was evaluated using MTT assay against HSV-1, HAV-10 virus and Coxsackie B4 virus. Metabolomics profiling was performed using UPLC-MS and molecular docking was performed via Autodock4 and visualization was done using the Discovery studio. Results: The early signs of SNPs synthesis were detected by a color change from yellow to reddish brown color. The TEM analysis of SNPs showed spherical nanoparticles with mean size ranges between 10.12 nm to 27.89 nm, and 8.91 nm 14.48 nm for Lampranthus coccineus and Malephora lutea aqueous and hexane extracts respectively. The UV-Visible spectrophotometric analysis showed an absorption peak at ?max of 417 nm.The green synthesized SNPs of L. coccineus and M. lutea showed remarkable antiviral activity against HSV-1, HAV-10, and CoxB4 virus. Metabolomics profiling of the methanolic extract of L. coccineus and M. lutea resulted in identifying 12 compounds. The docking study predicted the patterns of interactions between the compounds of L. coccineus and M. lutea with herpes simplex thymidine kinase, hepatitis A 3c proteinase, and Coxsackievirus B4 3c protease, which was similar to those of the co-crystal inhibitors and this can provide a supposed explanation for the antiviral activity of the aqueous and nano extracts of L. coccineus and M. lutea. Conclusion: These results highlight that SNPs of L. coccineus and M. lutea could have antiviral activity against HSV-1, HAV-10, and CoxB4 virus. � 2019 Haggag et al. This work is published and licensed by Dove Medical Press Limited.en_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=7700153108&tip=sid&clean=0
dc.identifier.doihttps://doi.org/10.2147/IJN.S214171
dc.identifier.doiPubMed ID 31496682
dc.identifier.issn11769114
dc.identifier.otherhttps://doi.org/10.2147/IJN.S214171
dc.identifier.otherPubMed ID 31496682
dc.identifier.urihttps://t.ly/dOgzr
dc.language.isoEnglishen_US
dc.publisherDove Medical Press Ltd.en_US
dc.relation.ispartofseriesInternational Journal of Nanomedicine
dc.relation.ispartofseries14
dc.subjectAntiviralen_US
dc.subjectLampranthus coccineusen_US
dc.subjectMalephora luteaen_US
dc.subjectMetabolomics profilingen_US
dc.subjectSilver nanoparticlesen_US
dc.subjecthexaneen_US
dc.subjectLampranthus coccineus extracten_US
dc.subjectMalephora lutea extracten_US
dc.subjectplant extracten_US
dc.subjectproteinaseen_US
dc.subjectsilver nanoparticleen_US
dc.subjectthymidine kinaseen_US
dc.subjectunclassified drugen_US
dc.subjectvirus 3c proteinaseen_US
dc.subjectantivirus agenten_US
dc.subjectliganden_US
dc.subjectmetal nanoparticleen_US
dc.subjectplant extracten_US
dc.subjectsilveren_US
dc.subjectaerial plant parten_US
dc.subjectAizoaceaeen_US
dc.subjectanimal cellen_US
dc.subjectantiviral activityen_US
dc.subjectaqueous solutionen_US
dc.subjectArticleen_US
dc.subjectcontrolled studyen_US
dc.subjectCoxsackievirus B4en_US
dc.subjectcrystal structureen_US
dc.subjectdrug structureen_US
dc.subjectdrug synthesisen_US
dc.subjectFourier transform infrared spectroscopyen_US
dc.subjectgreen chemistryen_US
dc.subjectHepatitis A virusen_US
dc.subjectHepatitis A virus 10en_US
dc.subjectHuman alphaherpesvirus 1en_US
dc.subjectIC50en_US
dc.subjectLampranthus coccineusen_US
dc.subjectliquid chromatography-mass spectrometryen_US
dc.subjectMalephora luteaen_US
dc.subjectmetabolomicsen_US
dc.subjectmolecular dockingen_US
dc.subjectMTT assayen_US
dc.subjectnonhumanen_US
dc.subjectparticle sizeen_US
dc.subjectphytochemistryen_US
dc.subjectsolvent extractionen_US
dc.subjecttransmission electron microscopyen_US
dc.subjectultraviolet visible spectroscopyen_US
dc.subjectVero cell lineen_US
dc.subjectvirus cell interactionen_US
dc.subjectanimalen_US
dc.subjectcell deathen_US
dc.subjectchemistryen_US
dc.subjectChlorocebus aethiopsen_US
dc.subjectdrug effecten_US
dc.subjectinfrared spectroscopyen_US
dc.subjectultrastructureen_US
dc.subjectultraviolet spectrophotometryen_US
dc.subjectAizoaceaeen_US
dc.subjectAnimalsen_US
dc.subjectAntiviral Agentsen_US
dc.subjectCell Deathen_US
dc.subjectCercopithecus aethiopsen_US
dc.subjectGreen Chemistry Technologyen_US
dc.subjectLigandsen_US
dc.subjectMetabolomicsen_US
dc.subjectMetal Nanoparticlesen_US
dc.subjectMolecular Docking Simulationen_US
dc.subjectPlant Extractsen_US
dc.subjectSilveren_US
dc.subjectSpectrophotometry, Ultravioleten_US
dc.subjectSpectroscopy, Fourier Transform Infrareden_US
dc.subjectVero Cellsen_US
dc.titleAntiviral potential of green synthesized silver nanoparticles of lampranthus coccineus and malephora luteaen_US
dc.typeArticleen_US
dcterms.isReferencedBySingh, T., Shukla, S., Kumar, P., Wahla, V., Bajpai, V., Rather, I., Application of nanotechnology in food science: Perception and overview (2017) Front Microbiol, 8, pp. 1-7; Khan, I., Saeed, K., Khan, I., Nanoparticles: Properties, applications, and toxicities (2017) Arabian J Chem, 1, pp. 1-24; Haider, A., Kang, I.K., Preparation of silver nanoparticles and their industrial and biomedical applications: A comprehensive review (2015) Adv Mater Sci Eng, pp. 1-16; Tran, Q.H., Nguyen, V.Q., Le, A.T., Silver nanoparticles: Synthesis, properties, toxicology, applications, and perspectives (2013) Adv Nat Sci, 4, pp. 1-20; Shameli, K., Ahmad, M.B., Zamanian, A., Green biosynthesis of silver nanoparticles using Curcuma longa tuber powder (2012) Int J Nanomedicine, 7, pp. 5603-5610; Jyoti, K., Baunthiyal, M., Singh, A., Characterization of silver nanoparticles synthesized using Urtica dioica Linn. Leaves and their synergistic effects with antibiotics (2016) J Radiat Res Appl Sci, 9 (3), pp. 217-227; Abou El-Nour, K.M., Eftaiha, A., Al-Warthan, A., Ammar, R.A., Synthesis and applications of silver nanoparticles (2010) Arab J Chem, 3, pp. 135-140; Lara, H.H., Garza-Trevino, E.N., Ixtepan-Turrent, L., Singh, D.K., Silver nanoparticles are broad-spectrum bactericidal and viricidal compounds (2011) J Nanobiotechnol, 9, p. 30; Marambio-Jones, C., Hoek, E.V., A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment (2010) J Nanopart Res, 12, pp. 1531-1551; Lara, H., Ayala-N��ez, N., Ixtepan Turrent, L., Rodr?guez Padilla, C., Bactericidal effect of silver nanoparticles against multidrug-resis-tant bacteria (2010) World J Microbiol Biotechnol, 26, pp. 615-621; Gajbhiye, M., Kesharwani, J., Ingle, A., Gade, A., Rai, M., Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole (2009) Nanomedicine, 5, pp. 382-386; Jogee, P.S., Ingle, A.B., Gupta, I.R., Bonde, S.R., Rai, M.K., Detection and management of mycotoxigenic fungi in nuts and dry fruits (2012) Acta Hortic, (963), p. 69; Shanmuganathan, R., Muthukumar, H., Pugazhendhi, A., An enhancement of antimicrobial efficacy of biogenic and ceftriaxone-conjugated silver nanoparticles: Green approach (2018) Environ Sci Pollut Res, 25, pp. 10362-10370; Pugazhendhi, A., Prabakar, D., Jacob, J., Karuppusamy, I., Saratale, R., Synthesis and characterization of silver nanoparticles using Gelidium amansii and its antimicrobial property against various pathogenic bacteria (2017) Microb Pathog, 114, pp. 41-45; Saravanan, M., Arokiyaraj, S., Lakshmi, T., Pugazhendhi, A., Synthesis of silver nanoparticles from Phenerochaete chrysosporium (MTCC787) and their antibacterial activity against human pathogenic bacteria (2018) Microb Pathog, 117, pp. 68-72; Jacob, J., John, M., Jacob, A., Bactericidal coating of paper towels via sustainable biosynthesis of silver nanoparticles using Ocimum sanctum leaf extract (2019) Mater Res Express, 4 (4), pp. 1-27; Khan, S., Khan, S., Kamal, T., Yasir, M., Asiri, A., Antibacterial nanocomposites based on chitosan/Co-MCM as a selective and efficient adsorbent for organic dyes (2016) Int J Biol Macromol, 91, pp. 744-751; Kamal, T., Islam, M., Khan, S., Asiri, A., Adsorption and photo-degrada-tion assisted dye removal and bactericidal performance of ZnO/chit-osan coating layer (2015) Int J Biol Macromol, pp. 584-590; Kamal, T., Anwar, Y., Khan, S., Chani, M., Asiri, A., Dye adsorption and bactericidal properties of TiO2/Chitosan coating layer (2016) Carbohydr Polym, 148, pp. 153-160; Khan, S., Ali, F., Kamal, T., Anwar, Y., Asiri, A., Seo, J., CuO embedded chitosan spheres as an antibacterial adsorbent for dyes (2016) Int J Biol Macromol, 88, pp. 113-119; Ali, F., Khan, S., Kamal, T., Anwar, Y., Alamry, K., Asiri, A., Bactericidal and catalytic performance of green nanocomposite based on chit-osan/carbon black fiber supported monometallic and bimetallic nanoparticles (2017) Chemosphere, 188, pp. 588-598; Ahmed, M., Kamal, T., Khan, S., Assessment of anti-bacterial Ni-Al/chitosan composite spheres for adsorption assisted photo-degrada-tion of organic pollutants (2016) Curr Nanosci, 12 (5), pp. 1-25; Kavitha, T., Haider, S., Kamal, T., Ul-Islam, M., Thermal decomposition of the metal complex precursor as a route to the synthesis of Co3O4 nanoparticles: Antibacterial activity and mechanism (2017) J Alloys Compd, 704, pp. 296-302; Pugazhendhi, A., Edison, T., Karuppusamy, I., Kathirvel, B., Inorganic nanoparticles: A potential cancer therapy for human welfare (2018) Int J Pharm, 539 (1-2), pp. 104-111; Oves, M., Aslam, M., Rauf, M., Antimicrobial and anticancer activities of silver nanoparticles synthesized from the root hair extract of Phoenix dactylifera (2018) Mater Sci Eng, 89, pp. 429-443; Ramkumar, V., Pugazhendhi, A., Gopalakrishnan, K., Biofabrication and characterization of silver nanoparticles using the aqueous extract of seaweed Enteromorpha compressa and its biomedical properties (2017) Biotechnol Rep, 14, pp. 1-7; Saratale, G., Saratale, R., Benelli, G., Anti-diabetic potential of silver nanoparticles synthesized with Argyreia nervosa leaf extract high synergistic antibacterial activity with standard antibiotics against foodborne bacteria (2017) J Clust Sci, 28, pp. 1709-1727; Galdiero, S., Falanga, A., Vitiello, M., Cantisani, M., Marra, V., Galdiero, M., Silver nanoparticles as potential antiviral agents (2011) Molecules, 16, pp. 8894-8918; Huy, T., Thanha, N., Thuya, N., Chunga, P., Hungb, P., Lec, A., Hanha, N., Cytotoxicity and antiviral activity of electrochemical � synthesized silver nanoparticles against poliovirus (2017) Journal of Virological Methods, 241, pp. 52-57; Dondaa, R., Kudlea, K., Alwalaa, J., Miryalaa, A., Sreedharb, B., Rudraa, P., Synthesis of silver nanoparticles using extracts of Securinega leuco-pyrus and evaluation of its antibacterial activity (2013) Int J Curr Sci, 7, pp. 1-8; Rajesh, S., Patric Raja, D., Rathi, J.M., Sahayaraj, K., Biosynthesis of silver nanoparticles using Ulva fasciata (Delile) ethyl acetate extract and its activity against Xanthomonas campestris pv. malvacearum, Bionanoparticle for phytopathogen management (2012) Jbiopest, 5, pp. 119-128; Abdelmohsen, U., Cheng, C., Viegelmann, C., Dereplication strategies for targeted isolation of new antitrypanosomal actinosporins A and B from a marine sponge-associated-actinokineospora sp. EG49 (2014) Mar Drugs, 12, pp. 1220-1244; Abdelhafez, O., Fawzy, M., Fahim, J., Hepatoprotective potential of Malvaviscus arboreus against carbon tetrachloride-induced liver injury in rats (2018) Plos One, 13 (8), pp. 1-18; Raheem, D., Tawfike, A., Abdelmohsen, U., Edrada-Ebel, R., Fitzsimmons-Thoss, V., Application of metabolomics and molecular networking in investigating the chemical profile and antitrypanosomal activity of British bluebells (Hyacinthoides non-scripta) (2019) Sci Rep, 9, pp. 1-13; Sethi, P., Activity of turbinaria ornata (Turner) J. Agade against Blue Tongue Virus (Btv) (2016) IOSR J Pharm, 6 (7), pp. 93-95. , Version. 3; Andrighetti-Fr�hner, R., Antonio, V., Creczynski-Pasa, B., Barardi, M., Sim�es, O., Cytotoxicity and potential antiviral evaluation of violacein produced by Chromobacterium violaceum (2003) Mem Inst Oswaldo Cruz, Rio De Janeiro, 98 (6), pp. 843-848; Jose, A., Abirami, T., Kavitha, V., Sellakilli, R., Karthikeyan, J., Green synthesis of silver nanoparticles using Asystasia gangetica leaf extract and its antibacterial activity against gram-positive and gram-negative bacteria (2018) J Pharmacogn Phytochem, 7 (1), pp. 2453-2457; Thomas, B., Prasad, A., Vithiya, S., Evaluation of the antioxidant, antibacterial and photocatalytic effect of silver nanoparticles from methanolic extract of Coleus vettiveroids-an endemic species (2018) J Nanostruct, 8 (2), pp. 179-190; Kumar, R., Ghoshal, G., Jain, A., Goyal, M., Rapid green synthesis of silver nanoparticles (AgNPs) using (Prunus persica) Plants extract: Exploring its antimicrobial and catalytic activities (2017) J Nanomed Nanotechnol, 8 (4), pp. 1-8; Erjaee, H., Rajaian, H., Nazifi, S., Synthesis and characterization of novel silver nanoparticles using Chamaemelum nobile extract for antibacterial application (2017) Adv Nat Sci, 8, pp. 1-9; Avilala, J., Golla, N., Antibacterial and antiviral properties of silver nanoparticles synthesized by marine actinomycetes (2019) Int J Pharm Sci Res, 10 (3), pp. 1223-1228; Jaidev, R., Narasimha, G., Fungal mediated biosynthesis of silver nanoparticles characterization and antimicrobial activity (2010) Colloids Surf B, 81, pp. 430-433; Shankar, S., Rai, A., Ahmad, A., Sastry, M., Rapid synthesis of silver nanoparticles by using onion (Allium cepa) extract and their antibacterial activity (2004) Digest J Nanomater Biostruct, 5, pp. 427-432; Gandhiraj, V., Kumar, K., Madhusudhanan, J., Sandhya, J., Antitumor activity of biosynthesized silver nanoparticles from leaves of Momordica charantia against MCF-7 cell line (2015) Int J Chemtech Res, 8 (7), pp. 351-362; Galdiero, S., Falanga, A., Cantisani, M., Ingle, A., Galdiero, M., Rai, M., Silver nanoparticles as novel antibacterial and antiviral agents (2014) Front Nanomedical Re, 3, pp. 565-594; Fatima, M., Zaidi, N., Amraiz, D., Afzal, F., In vitro antiviral activity of Cinnamomum cassia and its nanoparticles against H7N3 influenza A virus (2016) J Microbiol Biotechnol, 26 (1), pp. 151-159; Kwon, J., Kim, H., Yoon, Y., In vitro inhibitory activity of Alpinia katsumadai extracts against influenza virus infection and hemagglu-tination (2010) Virol. J., 7, p. 307; Ko, C., Wei, L., Chiou, F., The effect of medicinal plants used in Chinese folk medicine on RANTES secretion by virus-infected human epithelial cells (2006) J Ethnopharmacol, 107, pp. 205-210
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description:
Loading...
Thumbnail Image
Name:
ijn-214171-antiviral-potential-of-green-synthesized-silver-nanoparticle_2.pdf
Size:
4.72 MB
Format:
Adobe Portable Document Format
Description: