Molecular insight of miRNA-217 role in the pathogenesis of myocardial infarction: Promising diagnostic biomarker and therapeutic target

Loading...
Thumbnail Image

Date

2025-02-01

Journal Title

Journal ISSN

Volume Title

Type

Article

Publisher

KeAi Communications Co.

Series Info

Non-coding RNA Research ; Volume 10, Pages 192 - 197February 2025

Abstract

Background: Globally, myocardial infarction (MI) is one of the main causes of death. This study aims to investigate the role of miR-217 in the pathogenesis through targeting MAPK and PI3K/AKT signaling pathways in experimental model of myocardial infarction and studying the possible cardioprotective role of dihydromyricetin (DHM) through modulation of this pathway. Methods: Dihydromyricetin was injected (100 mg/kg; p.o.) in isoprenaline induced myocardial infarction rat model for 14 days. Rats were anaesthetized and blood samples were taken for serum separation, estimation of creatine kinase-MB (CK-MB), and troponin-I levels after 24 h had passed since the last isoprenaline injection. In addition, the hearts were also used for the other biochemical studies and the histological evaluation. Results: DHM resulted in a significant suppression of the elevated levels miR-217 and MAPK compared to the MI control group and restored the normal level of serum CK-MB. Furthermore, DHM successfully restored the oxidative balance and halted the pro-inflammatory mediators in the cardiac tissue. Conclusion: Accordingly, our experiment emphasizes the anti-ischemic property that has been demonstrated through modulation of expression level of miR-217 and consequent deactivation of MAPK and PI3K/AKT signaling pathways, and this was assured by halting downstream pro-inflammatory markers.

Description

Keywords

Cardioprotective, Dihydromyricetin, MAPK, miRNA-217, PI3K

Citation