Anti-Alzheimer potential, metabolomic profiling and molecular docking of green synthesized silver nanoparticles of Lampranthus coccineus and Malephora lutea aqueous extracts
dc.Affiliation | October University for modern sciences and Arts (MSA) | |
dc.contributor.author | Youssif K.A. | |
dc.contributor.author | Haggag E.G. | |
dc.contributor.author | Elshamy A.M. | |
dc.contributor.author | Rabeh M.A. | |
dc.contributor.author | Gabr N.M. | |
dc.contributor.author | Seleem A. | |
dc.contributor.author | Alaraby Salem M. | |
dc.contributor.author | Hussein A.S. | |
dc.contributor.author | Krischke M. | |
dc.contributor.author | Mueller M.J. | |
dc.contributor.author | Abdelmohsen U.R. | |
dc.contributor.other | Department of Pharmacognosy | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | Modern University for Technology and Information | |
dc.contributor.other | Cairo | |
dc.contributor.other | Egypt; Department of Pharmacognosy | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | Helwan University | |
dc.contributor.other | Cairo | |
dc.contributor.other | Egypt; Department of Pharmacognosy | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | Cairo University | |
dc.contributor.other | Cairo | |
dc.contributor.other | Egypt; Department of Pharmacology | |
dc.contributor.other | National Research Centre | |
dc.contributor.other | Cairo | |
dc.contributor.other | Egypt; Department of Pharmaceutical Chemistry | |
dc.contributor.other | October University for Modern Sciences and Arts (MSA) | |
dc.contributor.other | Cairo | |
dc.contributor.other | Egypt; Julius-von-Sachs-Institute of Biosciences | |
dc.contributor.other | Biocenter | |
dc.contributor.other | Pharmaceutical Biology | |
dc.contributor.other | University of W�rzburg | |
dc.contributor.other | W�rzburg | |
dc.contributor.other | Germany; Department of Pharmacognosy | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | Minia University | |
dc.contributor.other | Minia | |
dc.contributor.other | Egypt; Department of Pharmacognosy | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | Deraya University | |
dc.contributor.other | Universities Zone | |
dc.contributor.other | New Minia City | |
dc.contributor.other | Minia | |
dc.contributor.other | Egypt | |
dc.date.accessioned | 2020-01-09T20:40:47Z | |
dc.date.available | 2020-01-09T20:40:47Z | |
dc.date.issued | 2019 | |
dc.description | Scopus | |
dc.description.abstract | The green synthesis of silver nanoparticles (SNPs) using plant extracts is an eco-friendly method. It is a single step and offers several advantages such as time reducing, cost-effective and environmental non-toxic. Silver nanoparticles are a type of Noble metal nanoparticles and it has tremendous applications in the field of diagnostics, therapeutics, antimicrobial activity, anticancer and neurodegenerative diseases. In the present work, the aqueous extracts of aerial parts of Lampranthus coccineus and Malephora lutea F. Aizoaceae were successfully used for the synthesis of silver nanoparticles. The formation of silver nanoparticles was early detected by a color change from pale yellow to reddish-brown color and was further confirmed by transmission electron microscope (TEM), UV�visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), X-ray diffraction (XRD), and energy-dispersive X-ray diffraction (EDX). The TEM analysis of showed spherical nanoparticles with a mean size between 12.86 nm and 28.19 nm and the UV- visible spectroscopy showed ?max of 417 nm, which confirms the presence of nanoparticles. The neuroprotective potential of SNPs was evaluated by assessing the antioxidant and cholinesterase inhibitory activity. Metabolomic profiling was performed on methanolic extracts of L. coccineus and M. lutea and resulted in the identification of 12 compounds, then docking was performed to investigate the possible interaction between the identified compounds and human acetylcholinesterase, butyrylcholinesterase, and glutathione transferase receptor, which are associated with the progress of Alzheimer�s disease. Overall our SNPs highlighted its promising potential in terms of anticholinesterase and antioxidant activity as plant-based anti-Alzheimer drug and against oxidative stress. � 2019 Youssif et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. | en_US |
dc.description.uri | https://www.scimagojr.com/journalsearch.php?q=10600153309&tip=sid&clean=0 | |
dc.identifier.doi | https://doi.org/10.1371/journal.pone.0223781 | |
dc.identifier.doi | PubMed ID 31693694 | |
dc.identifier.issn | 19326203 | |
dc.identifier.other | https://doi.org/10.1371/journal.pone.0223781 | |
dc.identifier.other | PubMed ID 31693694 | |
dc.identifier.uri | https://t.ly/dOgXr | |
dc.language.iso | English | en_US |
dc.publisher | Public Library of Science | en_US |
dc.relation.ispartofseries | PLoS ONE | |
dc.relation.ispartofseries | 14 | |
dc.subject | acetylcholinesterase | en_US |
dc.subject | cholinesterase | en_US |
dc.subject | glutathione transferase receptor | en_US |
dc.subject | Lampranthus coccineus extract | en_US |
dc.subject | Malephora lutea extract | en_US |
dc.subject | methanol | en_US |
dc.subject | plant extract | en_US |
dc.subject | receptor | en_US |
dc.subject | silver nanoparticle | en_US |
dc.subject | unclassified drug | en_US |
dc.subject | water | en_US |
dc.subject | adult | en_US |
dc.subject | aerial plant part | en_US |
dc.subject | Aizoaceae | en_US |
dc.subject | Alzheimer disease | en_US |
dc.subject | animal experiment | en_US |
dc.subject | animal model | en_US |
dc.subject | animal tissue | en_US |
dc.subject | antioxidant activity | en_US |
dc.subject | Article | en_US |
dc.subject | color | en_US |
dc.subject | controlled study | en_US |
dc.subject | drug identification | en_US |
dc.subject | drug screening | en_US |
dc.subject | drug synthesis | en_US |
dc.subject | enzyme inhibition | en_US |
dc.subject | Lampranthus coccineus | en_US |
dc.subject | male | en_US |
dc.subject | Malephora lutea | en_US |
dc.subject | metabolomics | en_US |
dc.subject | molecular docking | en_US |
dc.subject | neuroprotection | en_US |
dc.subject | nonhuman | en_US |
dc.subject | oxidative stress | en_US |
dc.subject | particle size | en_US |
dc.subject | rat | en_US |
dc.title | Anti-Alzheimer potential, metabolomic profiling and molecular docking of green synthesized silver nanoparticles of Lampranthus coccineus and Malephora lutea aqueous extracts | en_US |
dc.type | Article | en_US |
dcterms.isReferencedBy | Rath, M., Panda, S., Dhal, N., Synthesis of silver nanoparticles from plant extract and its application in cancer treatment: A review (2014) Int J Plant Anim Environ Sci, 4, pp. 137-145. , ;; Donda, M., Kudle, K., Alwala, J., Miryala, A., Sreedhar, B., Rudra, P., Synthesis of silver nanoparticles using extracts of Securinega leucopyrus and evaluation of its antibacterial activity (2013) Int J Curr Sci, 7, pp. 1-8. , ;; Thirumurugan, A., Tomy, N., Ganesh, R., Gobikrishnan, S., Biological reduction of silver nanoparticles using plant leaf extracts and its effect on increased antimicrobial activity against clinically isolated organism (2010) Der Pharma Chemica, 2 (6), pp. 279-284. , ;; Nalwa, H., (2007) Handbook of Nanostructured Biomaterials and Their Applications in Nanobiotechnology, 2. , American Scientific Publishers; Gurudeeban, S., Ramanathan, T., Antidiabetic effect of Citrullus colocynthis in alloxon-induced diabetic rats (2010) Inventi Rapid. Ethno Pharmacology, 1, p. 112. , ;; Murthy, Y., Rao, T., Singh, R., Synthesis and characterization of nano silver ferrite composite (2010) Journal of Magnetism and Magnetic Materials, 322 (14), pp. 2071-2074. , ;; Pan�?ek, A., Kvitek, L., Prucek, R., Kol�?, M., Ve?e?ov�, R., Piz�rov�, N., Sharma, V., Zbo?il, R., Silver colloid nanoparticles: Synthesis, characterization, and their antibacterial activity (2006) The Journal of Physical Chemistry B, 110 (33), pp. 16248-16253. , https://doi.org/10.1021/jp063826h, PMID: 16913750; Sharma, V., Yngard, R., Lin, Y., Silver nanoparticles: Green synthesis and their antimicrobial activities (2009) Advances in Colloid and Interface Science, 145 (1-2), pp. 83-96. , https://doi.org/10.1016/j.cis.2008.09.002, PMID: 18945421; Chandran, S., Chaudhary, M., Pasricha, R., Ahmad, A., Sastry, M., Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract (2006) Biotechnology Progress, 22 (2), pp. 577-583. , https://doi.org/10.1021/bp0501423, PMID: 16599579; Abdelghany, M., Al-Rajhi, A., Al Abboud, M., Alawlaqi, M., Magdah, A., Helmy, E., Mabrouk, A., Recent advances in green synthesis of silver nanoparticles and their applications: About future directions. A review (2018) BioNanoSci, 8, pp. 5-16; Baruwati, B., Polshettiwar, V., Varma, R.S., Glutathione promoted expeditious green synthesis of silver nanoparticles in water using microwaves (2009) Green Chem, 11, pp. 926-930; Smuleac, V., Varma, R., Baruwati, B., Sikdar, S., Bhattacharyya, D., Nanostructured membranes for enzyme catalysis and green synthesis of nanoparticles (2011) ChemSusChem, 4, pp. 1773-1777. , https://doi.org/10.1002/cssc.201100211, PMID: 22086852; Shivaji, S., Madhu, S., Singh, S., Extracellular synthesis of antibacterial silver nanoparticles using psychrophilic bacteria (2011) Process Biochem, 46, pp. 1800-1807; Ahmed, A., Hamzah, H., Maaroof, M., Analyzing formation of silver nanoparticles from the filamentous fungus Fusarium oxysporum and their antimicrobial activity (2018) Turk J Biol, 42, pp. 54-62. , https://doi.org/10.3906/biy-1710-2, PMID: 30814870; Gour, A., Jain, N., Advances in green synthesis of nanoparticles Artificial Cells, Nanomedicine, and Biotechnology, 47 (1), pp. 844-851. , https://doi.org/10.1080/21691401.2019.1577878, PMID: 30879351; Gardea, J., Gomez, E., Peralta, J., Parsons, J., Troiani, H., Jose, M., Alfalfa sprouts: A natural source for the synthesis of silver nanoparticles (2003) Langmuir, 19 (4), pp. 1357-1361; Huang, J., Li, Q., Sun, D., Lu, Y., Su, Y., Yang, X., Wang, H., He, N., Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf (2007) Nanotechnology, 18 (10), pp. 105-1104; Leela, A., Vivekanandan, M., Tapping the unexploited plant resources for the synthesis of silver nanoparticles (2008) African Journal of Biotechnology, 7, p. 17; Li, S., Shen, Y., Xie, A., Yu, X., Qiu, L., Zhang, L., Zhang, Q., Green synthesis of silver nanoparticles using Capsicum annuum L. Extract (2007) Green Chemistry, 9 (8), pp. 852-858; Shankar, S., Rai, A., Ahmad, A., Sastry, M., Rapid synthesis of Au, Ag, and bimetallic Au core�Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth (2004) Journal of Colloid and Interface Science, 275 (2), pp. 496-502. , https://doi.org/10.1016/j.jcis.2004.03.003, PMID: 15178278; Song, J., Kim, B., Rapid biological synthesis of silver nanoparticles using plant leaf extracts (2009) Bioprocess and Biosystems Engineering, 32 (1), p. 79. , https://doi.org/10.1007/s00449-008-0224-6, PMID: 18438688; Mani, A., Lakshmi, S., Gopal, V., Bio-mimetic synthesis of silver nanoparticles and evaluation of its free radical scavenging activity (2012) Int. J. Biol. Pharm. Res., 3 (4), pp. 631-633; Rajenran, R., Ganesan, N., Balu, S.K.A., Thandavamorthy, P., Thiruvengadam, D., Green synthesis, characterization, antimicrobial and cytotoxic effects of silver nanoparticles using Origanum heracleoticum L. Leaf extract (2015) Int J Pharmacy & Pharmaceutical Sci, 7 (4), pp. 288-293; Mohan, S., Sasikala, K., Anand, T., Vengaiah, P., Krishnaraj, S., Green synthesis, antimicrobial and antioxidant effects of silver nanoparticles using Canthium coromandelicum leaves extract (2014) Res J Microbiol, 9 (3), pp. 142-150; Shawkey, A., Rabeh, M., Abdulall, A., Abdellatif, A., Green nanotechnology: Anticancer Activity of Silver Nanoparticles using Citrullus colocynthis aqueous extracts (2013) Advances in Life Science and Technology, 3, pp. 60-70; Mani, A., Seethalakshmi, S., Gopal, V., Evaluation of in vitro anti-inflammatory activity of silver nanoparticles synthesised using piper nigrum extract (2015) Journal of Nanomedicine & Nanotechnology, 6 (2), p. 1; Nazem, A., Mansoori, G., Nanotechnology for Alzheimer�s disease detection and treatment (2011) Insciences J, 1 (4), pp. 169-193; Naz?ro?lu, M., Muhamad, S., Pecze, L., Nanoparticles as potential clinical therapeutic agents in Alzheimer�s disease: Focus on selenium nanoparticles (2017) Expert Review of Clinical Pharmacology, pp. 751-2441; Saraiva, C., Pra�a, C., Ferreira, R., Santos, T., Ferreira, L., Bernardino, L., Nanoparticle-mediated brain drug delivery: Overcoming blood�brain barrier to treat neurodegenerative diseases (2016) J. Control. Release, 235, pp. 34-47. , https://doi.org/10.1016/j.jconrel.2016.05.044, PMID: 27208862; Hajipour, J., Santoso, R., Rezaee, F., Aghaverdi, H., Mahmoudi, M., Perry, G., Advances in Alzheimer�s diagnosis and therapy: The implications of nanotechnology (2017) Trends Biotechnol, 35, pp. 937-953. , https://doi.org/10.1016/j.tibtech.2017.06.002, PMID: 28666544; Carradori, D., Balducci, C., Re, F., Brambilla, D., Le Droumaguet, B., Flores, O., Gaudin, A., Andrieux, K., Antibody-functionalized polymer nanoparticle leading to memory recovery in Alzheimer�s disease-like transgenic mouse model (2018) Nanomed, Nanotechnol, Biol. Med, 14, pp. 609-618. , https://doi.org/10.1016/j.nano.2017.12.006, PMID: 29248676; Loureiro, A., Gomes, B., Fricker, G., Coelho, N., Rocha, S., Pereira, C., Cellular uptake of plga nanoparticles targeted with anti-amyloid and anti-transferrin receptor antibodies for Alzheimer�s disease treatment (2016) Coll. Surf. B Biointerfaces, 145, pp. 8-13; Zheng, X., Zhang, C., Guo, Q., Wan, X., Shao, X., Liu, Q., Zhang, Q., Dual-functional nanoparticles forvprecise drug delivery to Alzheimer�s disease lesions: Targeting mechanisms, pharmacodynamics and safety (2017) Int. J. Pharm, 525, pp. 237-248. , https://doi.org/10.1016/j.ijpharm.2017.04.033, PMID: 28432017; Dondaa, R., Kudlea, K., Alwalaa, J., Miryalaa, A., Sreedharb, B., Rudraa, P., Synthesis of silver nanoparticles using extracts of Securinega leucopyrus and evaluation of its antibacterial activity (2013) INT J CURR SCI, 7, pp. 1-8; Abdelmohsen, U., Cheng, C., Viegelmann, C., Zhang, T., Grkovic, T., Ahmed, S., Quinn, R., Edrada-Ebel, R., Dereplication strategies for targeted isolation of new antitrypanosomal actinosporins A and B from a marine sponge associated-Actinokineospora sp. Eg49 (2014) Mar. Drugs, 12, pp. 1220-1244. , https://doi.org/10.3390/md12031220, PMID: 24663112; Abdelhafez, O., Fawzy, M., Fahim, J., Desoukey, S., Krischke, M., Mueller, M., Abdelmohsen, U., Hepatoprotective potential of Malvaviscus arboreus against carbon tetrachloride-induced liver injury in rats (2018) Plos One, 13 (8), pp. 1-18; Raheem, D., Tawfike, A., Abdelmohsen, U., Edrada-Ebel, R., Fitzsimmons-Thoss, V., Application of metabolomics and molecular networking in investigating the chemical profile and antitrypanosomal activity of British bluebells (Hyacinthoides non-scripta) (2019) Scientific Reports, 9, pp. 1-13. , https://doi.org/10.1038/s41598-018-37186-2; Ragab, D., Abdallah, D., El-Abhar, H., Cilostazol renoprotective effect: Modulation of PPAR-C, NGAL, KIM-1 and IL-18 underlies its novel effect in a model of ischemia-reperfusion (2014) Plos One, 9 (5), pp. 1-10; Satoh, K., Serum lipid peroxide in cerebrovascular disorders determined by a new colorimetric method (1978) Clinica Chimica Acta, 90, pp. 37-43; Ohkawa, H., Ohishi, N., Yagi, K., Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction (1979) Analytical Biochemistry, 95, pp. 351-358. , https://doi.org/10.1016/0003-2697(79)90738-3, PMID: 36810; Chawla, V., Sathaye, S., Biosynthesis of silver nanoparticles using methanolic extracts of Acorus calamus, and assessment of its antioxidant and antimicrobial activity (2017) Journal of Medicinal Plants Studies, 5 (3), pp. 358-363; Evanoff, J., Chumanov, G., Synthesis and optical properties of silver nanoparticles and arrays (2005) ChemPhysChem, 6, pp. 1221-1231. , https://doi.org/10.1002/cphc.200500113, PMID: 15942971; Moosa, A., Ridha, A., Allawi, M., Green Synthesis of Silver Nanoparticles using Spent Tea Leaves Extract with Atomic Force Microscopy (2015) International Journal of Current Engineering and Technology, 5 (5), pp. 3233-3241; Obaid, A.-T.A., Al-Harbi, S., Khan, L., Extracellular bio-synthesis of silver nanoparticles (2015) Global Advanced Research Journal of Microbiology, 3 (8), pp. 119-126; Tripathy, A., Raichur, A., Chandrasekaran, N., Prathna, T., Mukherjee, A., Process variables in biomimetic synthesis of silver nanoparticles by aqueous extract of Azadirachta indica (Neem) leaves (2010) Journal of Nanoparticle Research, 12 (1), pp. 237-246; Kumar, R., Ghoshal, G., Jain, A., Goyal, M., Rapid Green Synthesis of Silver Nanoparticles (AgNPs) Using (Prunus persica) Plants extract: Exploring its antimicrobial and catalytic activities (2017) Journal of Nanomedicine & Nanotechnology, 8 (4), pp. 1-8; Erjaee, H., Rajaian, H., Nazifi, S., Synthesis and characterization of novel silver nanoparticles using Chamaemelum nobile extract for antibacterial application (2017) Advances in Natural Sciences: Nanoscience and Nanotechnology, 8, pp. 1-9; Bootz, A., Vogel, V., Schubert, D., Kreuter, J., Comparison of scanning electron microscopy, dynamic light scattering and analytical ultracentrifugation for the sizing of poly (butyl cyanoacrylate) nanoparticles (2004) Eur. J. Pharm Biopharm, 57 (2), pp. 369-375. , https://doi.org/10.1016/S0939-6411(03)00193-0, PMID: 15018998; Das, S., Roy, P., Mondal, S., Bera, T., Mukherjee, A., One-pot synthesis of gold nanoparticles and application in chemotherapy of wild and resistant type visceral leishmaniasis (2013) Colloid. Surface B, 107, pp. 27-34; Rao, B., Tang, R., Green synthesis of silver nanoparticles with antibacterial activities using aqueous Eriobotrya japonica leaf extract (2017) Advances in Natural Sciences, Nanoscience and Nanotechnology, 8, pp. 1-8; Paulkumar, K., Gnanajobitha, G., Vanaja, M., Rajeshkumar, S., Malarkodi, C., Pandian, K., Annadurai, G., Piper nigrum Leaf and Stem Assisted Green Synthesis of Silver Nanoparticles and Evaluation of Its Antibacterial Activity against Agricultural Plant Pathogens (2014) Scientific World Journal, 2014, pp. 1-9; Forough, M., Farhadi, K., Biological and green synthesis of silver nanoparticles (2010) Turkish J. Eng. Env. Sci., 34, pp. 281-287; Khan, F., Zahoor, M., Jalal, A., Rahman, A., Green Synthesis of Silver Nanoparticles by Using Ziziphus nummularia Leaves Aqueous Extract and Their Biological Activities (2016) Journal of Nanomaterials, 2016, pp. 1-8; Galle, B., Berry, G., Buckett, F., Electron microscope ultra structural localization of AlCl3 rat brain (1980) Acta Neuropathology, 49, pp. 245-247; Beutler, E., Duron, O., Kelly, M., Improved method for determination of blood glutathione (1963) J Lab Clin Med, pp. 882-888. , PMID: 13967893 | |
dcterms.source | Scopus |