The prognostic significance of the long non-coding RNAs “CCAT1, PVT1” in t(8;21) associated Acute Myeloid Leukemia
dc.Affiliation | October University for modern sciences and Arts (MSA) | |
dc.contributor.author | El-Khazragy N. | |
dc.contributor.author | Elayat W. | |
dc.contributor.author | Matbouly S. | |
dc.contributor.author | Seliman S. | |
dc.contributor.author | Sami A. | |
dc.contributor.author | Safwat G. | |
dc.contributor.author | Diab A. | |
dc.contributor.other | Clinical Pathology and Hematology Department | |
dc.contributor.other | Faculty of Medicine | |
dc.contributor.other | Ain Shams University Biomedical Research Department | |
dc.contributor.other | P.O. Box 11381 | |
dc.contributor.other | Cairo | |
dc.contributor.other | Egypt; Department of Medical Biochemistry | |
dc.contributor.other | Faculty of Medicine | |
dc.contributor.other | Ain Shams University | |
dc.contributor.other | Egypt; Department of Pediatrics | |
dc.contributor.other | Faculty of Medicine | |
dc.contributor.other | Ain Shams University | |
dc.contributor.other | Egypt; Faculty of Biotechnology | |
dc.contributor.other | October University for Modern Sciences and Arts (MSA) | |
dc.contributor.other | Cairo | |
dc.contributor.other | Egypt | |
dc.date.accessioned | 2020-01-09T20:40:35Z | |
dc.date.available | 2020-01-09T20:40:35Z | |
dc.date.issued | 2019 | |
dc.description | Scopus | |
dc.description | MSA Google Scholar | |
dc.description.abstract | Long non-coding RNA (LncRNA) is recently linked to various types of cancers, CCAT and PVT1 are two LncRNAs linked to t(8;21) associated Acute Myeloid Leukemia, the interplay between CCAT, PVT1 and the MYC proto-oncogene implicated in t(8;21) could present an opportunity for using LncRNA as prognostic biomarker or a target for therapy, We investigated the expression levels of LncRNAs in 70 patients; 30 with t(8;21) positive AML and 40 with t(8;21) negative AML, We found that CCAT1 and PVT1 are expressed in higher levels in t(8;21) positive �AML by 5.3 folds compared to t(8;21) negative group; the expression values were significantly associated with high-risk clinical criteria; moreover, they are associated with lower overall survival (OS) rate and leukemia-free survival (LFS), however we didn't find a statistically significant cut-off value of LncRNAs using the Cox regression analysis for Lnc_PVT1 except with LFS, we conclude that high expression levels of CCAT1 and PVT1 are associated with poor prognosis while being poor prognostic biomarkers in t(8;21) associated AML. � 2019 Elsevier B.V. | en_US |
dc.identifier.doi | https://doi.org/10.1016/j.gene.2019.03.055 | |
dc.identifier.doi | PubMedID30943439 | |
dc.identifier.issn | 3781119 | |
dc.identifier.other | https://doi.org/10.1016/j.gene.2019.03.055 | |
dc.identifier.other | PubMedID30943439 | |
dc.identifier.uri | https://t.ly/veqn7 | |
dc.language.iso | English | en_US |
dc.publisher | Elsevier B.V. | en_US |
dc.relation.ispartofseries | Gene | |
dc.relation.ispartofseries | 707 | |
dc.subject | October University for Modern Sciences and Arts | |
dc.subject | جامعة أكتوبر للعلوم الحديثة والآداب | |
dc.subject | University of Modern Sciences and Arts | |
dc.subject | MSA University | |
dc.subject | Acute Myeloid Leukemia (AML) | en_US |
dc.subject | Lnc-CCAT1 | en_US |
dc.subject | Lnc-PVT1 | en_US |
dc.subject | Prognostic factor | en_US |
dc.subject | t(8;21) | en_US |
dc.subject | long non coding RNA CCAT1 | en_US |
dc.subject | long non coding RNA PVT1 | en_US |
dc.subject | long untranslated RNA | en_US |
dc.subject | tumor marker | en_US |
dc.subject | unclassified drug | en_US |
dc.subject | CCAT1 long noncoding RNA, human | en_US |
dc.subject | long untranslated RNA | en_US |
dc.subject | Myc protein | en_US |
dc.subject | MYC protein, human | en_US |
dc.subject | PVT1 long-non-coding RNA, human | en_US |
dc.subject | tumor marker | en_US |
dc.subject | acute myeloid leukemia | en_US |
dc.subject | adult | en_US |
dc.subject | aged | en_US |
dc.subject | Article | en_US |
dc.subject | cancer prognosis | en_US |
dc.subject | cancer specific survival | en_US |
dc.subject | clinical feature | en_US |
dc.subject | cohort analysis | en_US |
dc.subject | comparative study | en_US |
dc.subject | controlled study | en_US |
dc.subject | demography | en_US |
dc.subject | female | en_US |
dc.subject | gene expression | en_US |
dc.subject | genetic association | en_US |
dc.subject | high risk patient | en_US |
dc.subject | human | en_US |
dc.subject | major clinical study | en_US |
dc.subject | male | en_US |
dc.subject | overall survival | en_US |
dc.subject | priority journal | en_US |
dc.subject | risk factor | en_US |
dc.subject | survival rate | en_US |
dc.subject | upregulation | en_US |
dc.subject | acute myeloid leukemia | en_US |
dc.subject | chromosome 21 | en_US |
dc.subject | chromosome 8 | en_US |
dc.subject | gene expression regulation | en_US |
dc.subject | gene translocation | en_US |
dc.subject | genetics | en_US |
dc.subject | middle aged | en_US |
dc.subject | prognosis | en_US |
dc.subject | regression analysis | en_US |
dc.subject | survival analysis | en_US |
dc.subject | young adult | en_US |
dc.subject | Adult | en_US |
dc.subject | Aged | en_US |
dc.subject | Biomarkers, Tumor | en_US |
dc.subject | Chromosomes, Human, Pair 21 | en_US |
dc.subject | Chromosomes, Human, Pair 8 | en_US |
dc.subject | Female | en_US |
dc.subject | Gene Expression Regulation, Neoplastic | en_US |
dc.subject | Humans | en_US |
dc.subject | Leukemia, Myeloid, Acute | en_US |
dc.subject | Male | en_US |
dc.subject | Middle Aged | en_US |
dc.subject | Prognosis | en_US |
dc.subject | Proto-Oncogene Proteins c-myc | en_US |
dc.subject | Regression Analysis | en_US |
dc.subject | RNA, Long Noncoding | en_US |
dc.subject | Survival Analysis | en_US |
dc.subject | Translocation, Genetic | en_US |
dc.subject | Up-Regulation | en_US |
dc.subject | Young Adult | en_US |
dc.title | The prognostic significance of the long non-coding RNAs “CCAT1, PVT1” in t(8;21) associated Acute Myeloid Leukemia | en_US |
dc.type | Article | en_US |
dcterms.isReferencedBy | Boon, R.A., Ja�, N., Holdt, L., Dimmeler, S., Long noncoding RNAs: from clinical genetics to therapeutic targets? (2016) J. Am. Coll. Cardiol., 67 (10), pp. 1214-1226. , https://www.sciencedirect.com/science/article/pii/S0735109716002242, (Internet). (cited 2018 Jul 21). Available from:; Chen, L., Wang, W., Cao, L., Li, Z., Wang, X., Long non-coding CCAT1 acts as a competing endogenous RNA to regulate cell growth and differentiation in acute myeloid leukemia (2016) Mol. Cell, 39 (4), pp. 330-336; Fan, H., Zhu, J.-H., Yao, X.-Q., Knockdown of long non-coding RNA PVT1 reverses multidrug resistance in colorectal cancer cells (2018) Mol. Med. Rep., 17 (6), pp. 8309-8315. , http://www.ncbi.nlm.nih.gov/pubmed/29693171, (Internet). (cited 2018 Jul 31). Available from:; Fatima, R., Akhade, V.S., Pal, D., Rao, S.M., Long noncoding RNAs in development and cancer: potential biomarkers and therapeutic targets (2015) Mol. Cell. Ther., 3 (1), p. 5. , http://molcelltherapies.com/article/view/30, (Internet). (cited 2018 Jul 21). Available from:; Gamis, A.S., Alonzo, T.A., Perentesis, J.P., Meshinchi, S., Children's Oncology Group's 2013 blueprint for research: acute myeloid leukemia (2013) Pediatr. Blood Cancer, 60 (6), pp. 964-971. , http://doi.wiley.com/10.1002/pbc.24432, (Internet). (cited 2018 Jun 27). Available from:; Grimwade, D., Hills, R.K., Moorman, A.V., Walker, H., Chatters, S., Goldstone, A.H., Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials (2010) Blood, 116 (3), pp. 354-365. , http://www.bloodjournal.org/cgi/doi/10.1182/blood-2009-11-254441, (Internet). (cited 2018 Jun 27). Available from:; Hamilton, M.J., Young, M.D., Sauer, S., Martinez, E., The interplay of long non-coding RNAs and MYC in cancer (2015) AIMS Biophys., 2 (4), pp. 794-809. , http://www.aimspress.com/article/10.3934/biophy.2015.4.794, (Internet). Available from:; Hu, J., Han, Q., Gu, Y., Ma, J., McGrath, M., Qiao, F., Circular RNA PVT1 expression and its roles in acute lymphoblastic leukemia (2018) Epigenomics, 10 (6), pp. 723-732. , http://www.ncbi.nlm.nih.gov/pubmed/29693417, (Internet). (cited 2018 Jul 31). Available from:; Huang, C., Yu, W., Wang, Q., Cui, H., Wang, Y., Zhang, L., Increased expression of the lncRNA PVT1 is associated with poor prognosis in pancreatic cancer patients (2015) Minerva Med., 106 (3), pp. 143-149. , http://www.ncbi.nlm.nih.gov/pubmed/25668599, (Internet). (cited 2018 Jul 21). Available from:; Izadifard, M., Pashaiefar, H., Yaghmaie, M., Montazeri, M., Sadraie, M., Momeny, M., Jalili, M., Ghavamzadeh, A., Expression analysis of PVT1, CCDC26, and CCAT1 long noncoding RNAs in acute myeloid leukemia patients (2018) Genet. Test. Mol. Biomarkers, 22 (10), pp. 593-598. , https://www.ncbi.nlm.nih.gov/pubmed/30222365, 2018 Oct. Epub 2018 Sep 14; Johansen, L.M., Iwama, A., Lodie, T.A., Sasaki, K., Felsher, D.W., Golub, T.R., c-Myc is a critical target for C/EBP in granulopoiesis (2001) Mol. Cell. Biol., 21 (11), pp. 3789-3806. , http://www.ncbi.nlm.nih.gov/pubmed/11340171, Internet. (cited 2018 Jun 27). Available from; Klein, K., Kaspers, G., Harrison, C.J., Beverloo, H.B., Reedijk, A., Bongers, M., Clinical impact of additional cytogenetic aberrations, cKIT and RAS mutations, and treatment elements in pediatric t(8;21)-AML: results from an international retrospective study by the international Berlin-Frankfurt-M�nster study group (2015) J. Clin. Oncol., 33 (36), pp. 4247-4258. , http://ascopubs.org/doi/10.1200/JCO.2015.61.1947, (Internet). (cited 2018 Jun 27). Available from:; M�ller-Tidow, C., Steffen, B., Cauvet, T., Tickenbrock, L., Ji, P., Diederichs, S., Translocation products in acute myeloid leukemia activate the Wnt signaling pathway in hematopoietic cells (2004) Mol. Cell. Biol., 24 (7), pp. 2890-2904. , http://www.ncbi.nlm.nih.gov/pubmed/15024077, Internet. (cited 2018 Jun 27). Available from; Nucifora, G., Rowley, J.D., AML1 and the 8;21 and 3;21 translocations in acute and chronic myeloid leukemia (1995) Blood, 86 (1), pp. 1-14. , http://www.ncbi.nlm.nih.gov/pubmed/7795214, (Internet). (cited 2018 Jun 27). Available from:; Pan, J.-Q., Zhang, Y.-Q., Wang, J.-H., Xu, P., Wang, W., lncRNA co-expression network model for the prognostic analysis of acute myeloid leukemia (2017) Int. J. Mol. Med., , http://www.spandidos-publications.com/10.3892/ijmm.2017.2888, (Internet). Available from; Quek, X.C., lncRNAdb v2.0: expanding the reference database for functional long noncoding RNAs (2015) Nucleic Acids Res., 43 (D1), pp. D168-D173; Saus, E., Brunet-Vega, A., Iraola-Guzm�n, S., Pegueroles, C., Gabald�n, T., Pericay, C., Long non-coding RNAs as potential novel prognostic biomarkers in colorectal cancer (2016) Front. Genet., 7, p. 54. , http://www.ncbi.nlm.nih.gov/pubmed/27148353, (Internet). (cited 2018 Jul 21). Available from; Siegel, R.L., Miller, K.D., Jemal, A., Cancer statistics (2017) CA Cancer J. Clin., 67 (1), pp. 7-30. , (Internet). 2017 Jan (cited 2018 Jun 27). Available from:; Slovak, M.L., Ho, J.P., Pettenati, M.J., Khan, A., Douer, D., Lal, S., Localization of amplified MYC gene sequences to double minute chromosomes in acute myelogenous leukemia (1994) Genes Chromosomes Cancer, 9 (1), pp. 62-67. , http://www.ncbi.nlm.nih.gov/pubmed/7507702, (Internet). (cited 2018 Jun 27). Available from:; Tobal, K., Newton, J., Machida, M., Chang, J., Morgenstern, G., Evans, P.A., Molecular quantitation of minimal residual disease in acute myeloid leukemia with t(8;21) can identify patients in durable remission and predict clinical relapse (2000) Blood, 95 (3), pp. 815-819. , http://www.ncbi.nlm.nih.gov/pubmed/10648391, Internet. (cited 2018 Jun 27). Available from; Wheatley, K., Burnett, A.K., Goldstone, A.H., Gray, R.G., Hann, I.M., Harrison, C.J., http://www.ncbi.nlm.nih.gov/pubmed/10520026, A simple, robust, validated and highly predictive index for the determination of risk-directed therapy in acute myeloid leukemia derived from the MRC AML 10 trial. United Kingdom Medical Research Council's Adult and Childhood Leukaemia Working Parties. Br. J. Haematol. (Internet). 1999 Oct (cited 2018 Jun 27);107(1):69�79. Available from:; Yang, X., Xie, X., Xiao, Y.-F., Xie, R., Hu, C.-J., Tang, B., The emergence of long non-coding RNAs in the tumorigenesis of hepatocellular carcinoma (2015) Cancer Lett., 360 (2), pp. 119-124. , http://www.ncbi.nlm.nih.gov/pubmed/25721084, (Internet). (cited 2018 Jul 31). Available from:; Zeng, C., Yu, X., Lai, J., Yang, L., Chen, S., Li, Y., Overexpression of the long non-coding RNA PVT1 is correlated with leukemic cell proliferation in acute promyelocytic leukemia (2015) J. Hematol. Oncol., 8, p. 126. , http://www.ncbi.nlm.nih.gov/pubmed/26545364, (Internet). (cited 2018 Jul 31). Available from: | |
dcterms.source | Scopus |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- avatar_scholar_256.png
- Size:
- 6.31 KB
- Format:
- Portable Network Graphics
- Description: