Phenolic profile, anti-inflammatory, antinociceptive, anti-ulcerogenic and hepatoprotective activities of Pimenta racemosa leaves
dc.Affiliation | October University for modern sciences and Arts (MSA) | |
dc.contributor.author | Moharram F.A.-E. | |
dc.contributor.author | Al-Gendy A.A. | |
dc.contributor.author | El-Shenawy S.M. | |
dc.contributor.author | Ibrahim B.M. | |
dc.contributor.author | Zarka M.A. | |
dc.contributor.other | Helwan University | |
dc.contributor.other | Department of Pharmacognosy | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | Cairo | |
dc.contributor.other | 11795 | |
dc.contributor.other | Egypt; Zagazig University | |
dc.contributor.other | Department of Pharmacognosy | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | Zagazig | |
dc.contributor.other | 44519 | |
dc.contributor.other | Egypt; National Research Center | |
dc.contributor.other | Department of Pharmacology | |
dc.contributor.other | Dokki | |
dc.contributor.other | Cairo | |
dc.contributor.other | 12622 | |
dc.contributor.other | Egypt; Modern Sciences and Arts University | |
dc.contributor.other | Department of Pharmacognosy | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | 6 October City | |
dc.contributor.other | Egypt; Modern University for Technology and Information | |
dc.contributor.other | Department of Pharmacognosy | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | Cairo | |
dc.contributor.other | Egypt | |
dc.date.accessioned | 2020-01-09T20:40:54Z | |
dc.date.available | 2020-01-09T20:40:54Z | |
dc.date.issued | 2018 | |
dc.description | Scopus | |
dc.description.abstract | Background: Pimenta racemosa tree has many traditional uses where its leaves are used as herbal tea for treatment of flatulence, gastric disorder, osteoarthritis, colds and fever in addition to its analgesic and anti-inflammatory activities. So, this study aimed to isolate phenolic constituents of 80% aqueous methanol extract (AME) of leaves and evaluate its biological activities. Methods: The defatted AME was chromatographed and structures of the isolated compounds were elucidated using UV, NMR spectroscopy and UPLC-ESI-MS analysis. Antioxidant activity was investigated using 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity. Anti-inflammatory activity was evaluated using carrageenan - induced paw oedema, while antinociceptive activity was determined by chemical and thermal stimuli. Anti-ulcerogenic effect of AME against gastric damage induced by ethanol in Wister male albino rats was evaluated. Also, hepatoprotective activity was investigated through determination of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) following oral administration of paracetamol. Both of Anti-ulcerogenic and hepatoprotective activities (125, 250 and 500 mg/kg b.wt.) were supported by histopathological examinations. Results: Gallic acid (1), methyl gallate (2), avicularin (3), quercetin 3-O-?-D-arbinopyranoside (4), quercetin 3-O-?-D-glucopyranoside (5), quercetrin (6), cynaroside (7), strictinin (8), castalagin (9), grandinin (10) quercetin (11) and ellagic acid (12) were isolated. AME showed significant radical scavenging activity (SC50 = 4.6 ?g/mL), promising anti-inflammatory effect through inhibition of oedema and antinociceptive activity by reduction in number of writhes after acetic acid injection and prolongation of reaction time towards the thermal stimulus. AME reduced the gastric mucosal lesions compared with ethanol control and ranitidine groups, ALT at the three doses and AST only at 125 and 250 mg/kg b.wt., when compared with paracetamol group. The results were confirmed by histopathological studies. Conclusion:P. racemosa leaves are rich in phenolic compounds and showed significant biological activities. � 2018 The Author(s). | en_US |
dc.description.uri | https://www.scimagojr.com/journalsearch.php?q=34441&tip=sid&clean=0 | |
dc.identifier.doi | https://doi.org/10.1186/s12906-018-2260-3 | |
dc.identifier.doi | PubMed ID 29976187 | |
dc.identifier.issn | 14726882 | |
dc.identifier.other | https://doi.org/10.1186/s12906-018-2260-3 | |
dc.identifier.other | PubMed ID 29976187 | |
dc.identifier.uri | https://t.ly/LZK2Y | |
dc.language.iso | English | en_US |
dc.publisher | BioMed Central Ltd. | en_US |
dc.relation.ispartofseries | BMC Complementary and Alternative Medicine | |
dc.relation.ispartofseries | 18 | |
dc.subject | Anti-inflammatory | en_US |
dc.subject | Anti-ulcerogenic | en_US |
dc.subject | Antinociceptive | en_US |
dc.subject | Hepatoprotective | en_US |
dc.subject | Myrtaceae | en_US |
dc.subject | Phenolic compounds | en_US |
dc.subject | Pimenta racemosa | en_US |
dc.subject | 1,1 diphenyl 2 picrylhydrazyl | en_US |
dc.subject | acetic acid | en_US |
dc.subject | acetylsalicylic acid | en_US |
dc.subject | alanine aminotransferase | en_US |
dc.subject | alcohol | en_US |
dc.subject | aspartate aminotransferase | en_US |
dc.subject | avicularine | en_US |
dc.subject | castalagin | en_US |
dc.subject | ellagic acid | en_US |
dc.subject | flavonoid | en_US |
dc.subject | gallic acid | en_US |
dc.subject | gallic acid methyl ester | en_US |
dc.subject | grandinin | en_US |
dc.subject | indometacin | en_US |
dc.subject | luteolin 7 glucoside | en_US |
dc.subject | methanol | en_US |
dc.subject | paracetamol | en_US |
dc.subject | phenol derivative | en_US |
dc.subject | Pimenta racemosa extract | en_US |
dc.subject | plant extract | en_US |
dc.subject | plant medicinal product | en_US |
dc.subject | quercetin | en_US |
dc.subject | quercetin 3 o beta dextro arabinopyranoside | en_US |
dc.subject | quercetin 3 o beta dextro glucopyranoside | en_US |
dc.subject | quercetrin | en_US |
dc.subject | ranitidine | en_US |
dc.subject | silymarin | en_US |
dc.subject | strictinin | en_US |
dc.subject | tramadol | en_US |
dc.subject | unclassified drug | en_US |
dc.subject | analgesic agent | en_US |
dc.subject | antiinflammatory agent | en_US |
dc.subject | phenol derivative | en_US |
dc.subject | plant extract | en_US |
dc.subject | protective agent | en_US |
dc.subject | adult | en_US |
dc.subject | alanine aminotransferase blood level | en_US |
dc.subject | analgesic activity | en_US |
dc.subject | animal experiment | en_US |
dc.subject | animal model | en_US |
dc.subject | animal tissue | en_US |
dc.subject | antiinflammatory activity | en_US |
dc.subject | antioxidant activity | en_US |
dc.subject | antiulcer activity | en_US |
dc.subject | aqueous solution | en_US |
dc.subject | Article | en_US |
dc.subject | aspartate aminotransferase blood level | en_US |
dc.subject | carrageenan-induced paw edema | en_US |
dc.subject | chromatography | en_US |
dc.subject | controlled study | en_US |
dc.subject | DPPH radical scavenging assay | en_US |
dc.subject | drug dose comparison | en_US |
dc.subject | drug isolation | en_US |
dc.subject | drug structure | en_US |
dc.subject | electrospray mass spectrometry | en_US |
dc.subject | ethanol-induced gastric ulcer | en_US |
dc.subject | female | en_US |
dc.subject | heat stress | en_US |
dc.subject | histopathology | en_US |
dc.subject | hot plate test | en_US |
dc.subject | liver disease | en_US |
dc.subject | liver protection | en_US |
dc.subject | male | en_US |
dc.subject | mouse | en_US |
dc.subject | nonhuman | en_US |
dc.subject | nuclear magnetic resonance spectroscopy | en_US |
dc.subject | number of writhes | en_US |
dc.subject | physical chemistry | en_US |
dc.subject | phytochemistry | en_US |
dc.subject | Pimenta | en_US |
dc.subject | Pimenta racemosa | en_US |
dc.subject | plant leaf | en_US |
dc.subject | rat | en_US |
dc.subject | response time | en_US |
dc.subject | stomach mucosa lesion | en_US |
dc.subject | ultra performance liquid chromatography | en_US |
dc.subject | ultraviolet spectroscopy | en_US |
dc.subject | Wistar rat | en_US |
dc.subject | writhing test | en_US |
dc.subject | animal | en_US |
dc.subject | animal behavior | en_US |
dc.subject | chemistry | en_US |
dc.subject | drug effect | en_US |
dc.subject | edema | en_US |
dc.subject | liver | en_US |
dc.subject | pathology | en_US |
dc.subject | pathophysiology | en_US |
dc.subject | plant leaf | en_US |
dc.subject | stomach | en_US |
dc.subject | Analgesics | en_US |
dc.subject | Animals | en_US |
dc.subject | Anti-Inflammatory Agents | en_US |
dc.subject | Behavior, Animal | en_US |
dc.subject | Edema | en_US |
dc.subject | Female | en_US |
dc.subject | Liver | en_US |
dc.subject | Male | en_US |
dc.subject | Phenols | en_US |
dc.subject | Pimenta | en_US |
dc.subject | Plant Extracts | en_US |
dc.subject | Plant Leaves | en_US |
dc.subject | Protective Agents | en_US |
dc.subject | Rats | en_US |
dc.subject | Rats, Wistar | en_US |
dc.subject | Stomach | en_US |
dc.title | Phenolic profile, anti-inflammatory, antinociceptive, anti-ulcerogenic and hepatoprotective activities of Pimenta racemosa leaves | en_US |
dc.type | Article | en_US |
dcterms.isReferencedBy | Bailey, L.H., (1968) Manual of cultivated Plants, , New York: The MacMillan Company; Aboutabl, E.A., Tadros, S.H., El-Azzouny, A.M.A., (2003). Composition and antimicrobial activity of volatiles from the leaf, flower and fruit of Pimenta officinalis (berg.) L. and Pimenta racemosa (mill) J.W. Moore cultivated in Egypt (2003) Egypt Pharm J, 1, pp. 45-54; Alitonou, G.A., Noudogbessi, J., Sessou, P., Tonouhewa, A., Avlessi, F., Menut, C., Sohounhloue, D.C., Chemical composition and biological activities of essential oils of Pimenta racemosa (mill) JW Moore from Benin (2012) Int J Biosci, 2, pp. 1-12. , https://doi.org/10.4314/ijbcs.v6i4.37; Duke, J.A., Bogenschutz-Godwin, M.J., Ottesen, A.R., Duke's handbook of medicinal plants of Latin America (2008), https://doi.org/10.1201/9781420043174, London, New York: Taylor Francis Inc, CRC Press; Defilipps, R.A., Maina, S.L., Crepin, J., Medicinal plants of the Guianas (2004), (Guyana, Surinam, French Guiana). Washington DC: Department of Botany, National Museum of Natural History, Smithsonian Institution; Yousif, F., Hifnawy, M.S., Soliman, G., Boulos, L., Labib, T., Mahmoud, S., Large-scale in vitro. Screening of egyptian native and cultivated plants for schistosomicidal activity (2007) Pharm Biol, 45 (6), pp. 501-509. , https://doi.org/10.1080/13880200701389425; Garc�a, M.D., Fern�ndez, M.A., Alvarez, A., Saenz, M.T., Antinociceptive and anti-inflammatory effect of the aqueous extract from leaves of Pimenta racemosa var. ozua (Mirtaceae) (2004) J Ethnopharmacol, 91 (1), pp. 69-73. , https://doi.org/10.1016/j.jep.2003.11.018; Kikiuzaki, H., Kawaiy, H.S., Nakatani, N., Antioxidative phenylpropanoids from berries of Pimenta dioica (1999) Phytochemistry, 52, pp. 1307-1312. , https://doi.org/10.1016/s0031-9422(99)00406-9; Kikiuzaki, H., Sato, A., Mayahara, Y., Nakatani, N., Galloylglucosides from berries of Pimenta dioica (2000) J Nat Prod, 63 (6), pp. 749-752. , https://doi.org/10.1021/np9906121; Marzouk, M.S., Moharram, F.A., Mohamed, M.A., Gamal-Eldeen, A.M., Elsayed, A.A., Anticancer and antioxidant tannins from Pimenta dioica leaves (2007) Z Naturforsch C, 62 (7-8), pp. 526-536. , https://doi.org/10.1515/znc-2007-7-811; Moharram, F.A., Mohamed, M.A., Marzouk, M.S., Aboutabl, A.E., Flavonoids and triterpenoid saponins from Pimenta dioica (Merr.) L (2007) Nat Prod Commun, 2 (9), pp. 895-900. , https://doi.org/10.1515/znc-2007-7-811; Nayak, Y., Abhilash, D., Vijayanarayana, K., Fernandes, J., Antioxidant and hepatoprotective activity of Pimenta Dioica leaves extract (2008) J Cell Tissue Res, 8 (3), pp. 1571-1576; Yen, G.C., Duh, P.D., Scavenging effect of methanolic extracts of peanut hulls on free radical and active oxygen species (1994) J Agric Food Chem, 42, pp. 629-632. , https://doi.org/10.1021/jf00039a005; Winter, C.A., Risley, E.A., Nuss, G.W., Carrageenan-induced oedema in hind paws of the rat as an assay for anti-inflammatory drugs (1962) Proc Soc Exp Biol Med, 111, pp. 544-552. , https://doi.org/10.3181/00379727-111-27849; Obukowicz, M.G., Welsch, D.J., Salsgiver, W.J., Berger, M., Chinn, K.S., Duffin, K.L., Novel, selective delta 6 or delta 5 fatty acid desaturase inhibitors as anti-inflammatory agents in mice (1998) J Pharmacol Exp Ther, 287, pp. 157-162. , https://doi.org/10.1007/bf02562269; Collier, H.D.J., Dinnin, L.C., Johnson, C.A., Schneider, C., The abdominal response and its suppression by analgesic drugs in the mouse (1968) Br J Pharmacol Chemother, 32, pp. 295-310. , https://doi.org/10.1111/j.1476-5381.1968.tb00973.x; Eddy, N.B., Leimbach, D., Synthetic analgesics II. Dithienylbutenyl and dithienylbutilamines (1953) J Pharmacol Exp Ther, 107, pp. 385-393; Wolfe, A.M., Kennedy, L.H., Na, J.J., Nemzek-Hamlin, J.A., Efficacy of tramadol as a sole analgesic for postoperative pain in male and female mice (2015) J Am Assoc Lab Anim Sci, 54 (4), pp. 411-419; Robert, A., Nezamis, J.E., Lancaster, C., Hanchar, A.J., Cytoprotection by prostaglandins in rats. Prevention of gastric necrosis produced by alcohol, HC1, NaOH, hypertonic NaCl, and thermal injury (1979) Gastroenterology, 77, pp. 433-443; Alvares, A., Pomar, F., Sevilla, M.A., Montero, M.J., Gastric antisecretory and antiulcer activities of an ethanolic extract of Bidens pilosa L. var. radiate Schult (1999) J Ethnopharmacol, 67, pp. 333-340. , https://doi.org/10.1016/s0378-8741(99)00092-6; M�zsik Gy, M.F., Javor, T., Cellular mechanism of the development of gasric mucosal damage and gasric cytoprotection induced by prostacyclin in rats. A pharmacological study (1982) Prostaglandins Leukot Med, 9 (1), pp. 71-84. , https://doi.org/10.1016/0262-1746(82)90074-9; Drury, R.A.B., Wallington, F.A., (1980) Corleton's histological technique 4th Ed, , Oxford, New York, Toronto: Oxford University press; Gilani, A.H., Janbaz, K.H., Preventive and curative effects of Artemisia absinthium on acetaminophen and CCl4 -induced hepatotoxicity (1995) Gen Pharmacol, 26 (2), pp. 309-315. , https://doi.org/10.1016/0306-3623(94)00194-r; Bhandari, U., Shamsher, A., Pillai, K.K., Antihepatotoxic activity of ginger ethanol extract in rats (2003) Pharm Biol, 41 (1), pp. 66-71. , https://doi.org/10.1076/phbi.41.1.68.14697; Sorg, D.A., Buckner, B.A., Simple method of obtaining venous blood from small laboratory animals (1964) Proc Soc Exp Biol Med, 115, pp. 1131-1132. , https://doi.org/10.3181/00379727-115-29134; Semler, D.E., Gad, S.C., Chengelis, C.P., The rat (1992) Animal Models in Toxicology, , https://doi.org/10.1002/jat.2550130517, Gad SC, Chengelis CP, editors. New York: Marcel Dekker, Inc; Mabry, T.J., Markham, K.R., Thomas, M.B., (1970) The systematic identification of flavonoids, , https://doi.org/10.1007/978-3-642-88458-0, New York: Springer Verlag; Barakat, H.H., Hussein, S.A.M., Marzouk, M.S., Merfort, I., Leinsheid, M.W., Nawar, M.A.M., Polyphenolic metabolites of Epilobium hirsutum (1997) Phytochemistry, 46, pp. 935-941. , https://doi.org/10.1016/s0031-9422(97)00370-1; Metwally, A.M., Omar, A.A., Harraz, F.M., El Sohafy, S.M., Phytochemical investigation and antimicrobial activity of Psidium guajava L. leaves (2010) Pharmacogn Mag, 6 (23), pp. 212-218. , https://doi.org/10.4103/0973-1296.66939; Wan, C., Yu, Y., Zhou, S., Tian, S., Cao, S., Isolation and identification of phenolic compounds from Gynura divaricata leaves (2011) Pharmacogn Mag, 7 (26), pp. 101-108. , https://doi.org/10.4103/0973-1296.80666; Agrawal, P.K., Bansal, M.C., Flavonoid glycosides (1989) Studies in Organic Chemistry, 39. , https://doi.org/10.1016/b978-0-444-87449-8.50012-2, Agrawal PK, editor, 13C NMR of flavonoids. New York: Elsevier; Mabry, T.J., Markham, K.R., (1975) The flavonoids, , https://doi.org/10.1007/978-1-4899-2909-9, London: Chapman and Hall; Gupta, R.K., Al-Shafi, S.M., Layden, K., Haslam, E., The metabolism of gallic acid and hexahydroxydiphenic acid in plants (1982) Biochem Soc Trans, 1, pp. 2525-2534. , https://doi.org/10.1039/p19820002525; Okuda, Y., Yoshida, T., Hatano, T., Yazaki, K., Ashida, M., Ellagitannins of the Casuarinaceae, Stachyuraceae and Myrtaceae (1980) Phytochemistry, 21 (12), pp. 2871-2874. , https://doi.org/10.1016/0031-9422(80)85058-8; Okuda, T., Yoshida, T., Ashida, M., Yazaki, K.J., Tannins of casuarina and stachyurus species. Part 1. Structures of pendunculagin, casuarictin, strictinin, casuarinin, casuariin, and stachyurin (1983) Chem Soc Perkin Trans, 1, pp. 1765-1772. , https://doi.org/10.1002/chin.198348342; Okuda, T., Yoshida, T., Hatano, T.J., New methods of analyzing tannins (1989) Nat Prod, 52, pp. 1-31. , https://doi.org/10.1021/np50061a001; Vivas, N., Laguerre, M., Glories, Y., Bourgeois, G., Vitry, C., Structure simulation of two ellagitannins from Quercus robur L (1995) Phytochemistry, 39, pp. 1193-1199. , https://doi.org/10.1016/0031-9422(95)00148-z; Moharram, F., Marzouk, M.S., El-Toumy, S.A.A., Ahmed, A.A.E., Aboutabl, E.A., Polyphenols of Melaleuca quinquenervia leaves - pharmacological studies of grandinin (2003) Phytother Res, 17, pp. 767-773. , https://doi.org/10.1002/ptr.1214; Rasines-Perea, Z., Jacquet, R., Jourdes, M., C-glucosidic ellagitannin concentrations variability during the years in Syrah wines from Languedoc vineyard (2016) BIO Web of Conferences, 7, pp. 1-4. , https://doi.org/10.1051/bioconf/2016070200,https://doi.org/10.1016/0262-1746(83)90032-x; Nonaka, G., Ishimaru, K., Azuma, R., Ishimatsu, M., Nishioka, I., Tannins and related compounds, LXXXV. Structures of novel C-glycosidic ellagitannins, grandinin and pterocarinins a and B (1989) Chem Pharm Bull, 37, pp. 2071-2077. , https://doi.org/10.1248/cpb.37.2071; Herv-Du Penhoat, C., Michon, V., Peng, S., Viriot, C., Scalbert, A., Gage, D., Structural elucidation of new dimeric ellagitannins from Quercus robur L. Roburins A-E (1991) Chem Soc Perkin Trans, 1, pp. 1653-1660. , https://doi.org/10.1039/p19910001653; Kumar, S., Pandey, A., Chemistry and biological activities of flavonoids: an overview (2013) Scientific World J, 2013, pp. 1-16. , https://doi.org/10.1155/2013/162750; De Lira Mota, K.S., Dias, G.E.N., Pinto, M.E.F., Luiz-Ferreira, A., Souza-Brito, A.R.M., Hiruma-Lima, C.A., Flavonoids with gastroprotective activity (2009) Molecules, 14, pp. 979-1012. , https://doi.org/10.3390/molecules14030979; Borgi, W., Recio, M.C., Rios, J.L., Chouchane, N., Anti-inflammatory and analgesic activities of flavonoid and saponin fractions from Zizyphus lotus (L.) lam (2008) S Afr J Bot, 74 (2), pp. 320-324. , https://doi.org/10.1016/j.sajb.2008.01.009; Ghasemzadeh, A., Ghasemzadeh, N., Flavonoids and phenolic acids: role and biochemical activity in plants and human (2011) J Med Plant Res, 5 (31), pp. 6697-6703. , https://doi.org/10.5897/jmpr11.1404; Agrawal, A.D., Pharmacological activities of flavonoids: a review (2011) Int J Pharm Sci Nanotech, 4 (2), pp. 1394-1398; Kelly, E.H., Anthony, R.T., Dennis, J.B., Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships (2002) J Nutr Biochem, 13 (10), pp. 572-584. , https://doi.org/10.1016/s0955-2863(02)00208-5; Kumar, S., Mishra, A., Pandey, A.K., Antioxidant mediated protective effect of Parthenium hysterophorus against oxidative damage using in vitro models (2013) BMC Complement Altern Med, 13. , https://doi.org/10.1186/1472-6882-13-120; Sener-Muratog, G., Paskalog, K., Arbak, S., Hurdag, C., Dulger, G., Protective effect of famotidine, omeprazole, and melatonin against acetylsalicylic acid-induced gastric damage in rats (2001) Dig Dis Sci, 46 (2), pp. 318-330. , https://doi.org/10.1007/s10620-005-2869-1; Shu, M.H., Appleton, D., Zandi, K., Abu Bakar, S., Anti-inflammatory, gastroprotective and anti-ulcerogenic effects of red algae Gracilaria changii (Gracilariales, Rhodophyta) extract (2013) BMC Complement Altern Med, 13, p. 61. , https://doi.org/10.1186/1472-6882-13-61; Wang, Z., Hasegawa, J., Wang, X., Matsuda, A., Tokuda, T., Miura, N., Watanabe, T., Protective effects of Ginger against aspirin-induced gastric ulcers in rats (2011) Yonago Acta med, 54, pp. 11-19; Moharram, F.A., Marzouk, M.S., El-Dib, R.A., El-Shenawy, S.M., Abdel-Rahman, R.F., Ibrahim, R.R., Hepatoprotective, gastroprotective, antioxidant activity and phenolic constituents of Quercus robur leaves (2015) J Pharm Sci & Res, 7 (11), pp. 1055-1065; Fern�ndez, M.A., Alvarez, A., M.D, G., S�enz, M.T., Anti-inflammatory effect of Pimenta racemosa var. ozua and isolation of the triterpene lupeol (2001) Il Farmaco, 56, pp. 335-338. , https://doi.org/10.1016/s0014-827x(01)01080-1; Fern�ndez, M.A., Tornos, M.P., M.D, G., de las Heras, B., Villar, A.M., S�enz, M.T., Anti-inflammatory activity of abietic acid, a diterpene isolated from Pimenta racemosa var. grissea (2001) J Pharm Pharmacol, 53 (6), pp. 867-872. , https://doi.org/10.1211/0022357011776027; Al-Rehaily, A.J., Al-Said, M.S., Al-Yahya, M.A., Mossa, J.S., Rafatullah, S., Ethnopharmacological studies on allspice (Pimenta dioica) in laboratory animals (2002) Pharm Biol, 40 (3), pp. 200-205. , https://doi.org/10.1076/phbi.40.3.200.5829; El-Shenawy, S.M., Marzouk, M.S., El-Dib, R.A., Abo Elyazed, H.E., Shaffie, N.M., Moharram, F.A., Polyplenols and biological activities of Feijoa sellowiana leaves and twigs (2008) Rev Latinoamer Qu�m, 36 (3), pp. 103-120. , https://doi.org/10.1055/s-2007-98683 | |
dcterms.source | Scopus |