Potentiometric diclofenac detection in wastewater using functionalized nanoparticles

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorElbalkiny H.T.
dc.contributor.authorYehia A.M.
dc.contributor.authorRiad S.M.
dc.contributor.authorElsaharty Y.S.
dc.contributor.otherAnalytical Chemistry Department
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherOctober University for Modern Sciences and Arts (MSA)
dc.contributor.other6th October City
dc.contributor.other11787
dc.contributor.otherEgypt; Analytical Chemistry Department
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherCairo University
dc.contributor.otherKasr-El Aini 13 Street
dc.contributor.otherCairo
dc.contributor.other11562
dc.contributor.otherEgypt; Chemistry Department
dc.contributor.otherSchool of Pharmacy and Pharmaceutical Industries
dc.contributor.otherBadr University in Cairo
dc.contributor.otherBadr City
dc.contributor.otherCairo
dc.contributor.other11829
dc.contributor.otherEgypt
dc.date.accessioned2020-01-09T20:40:40Z
dc.date.available2020-01-09T20:40:40Z
dc.date.issued2019
dc.descriptionScopus
dc.description.abstractIon selective electrodes for diclofenac monitoring in both pharmaceutical wastewater and dosage form were described; that are considered environmental friendly analytical method. The sensors development depended on comparative performance evaluation of membranes that were based on functionalized magnetite nanoparticles with the classical sensors; this approach provided that nanoparticles in the inner solution of sensor membrane were highly dispersed and coated with ionophore to enhance a complete ion-pairing interaction between the ionophore and the analyte. The optimum membrane was that containing ??cyclodextrin coupled with magnetite ferric oxide as inner filling solution, dibutylphthalate as plasticizer and crystal violet as ion exchanger in poly (vinylchloride) matrix. This sensor (CV-Fe-?-CD) exhibited high sensitivity, Nernstian slope of the calibration curve, as well as fast, stable response and good selectivity. The sensor exhibits a Nernstian slope of ?58.7 � 1 mV/decade over the concentration range 1.0 � 10?7 to 1.0 � 10?2 M of Diclofenac with a minimal limit of detection of 1.1 � 10?7 M. The electrode showed a good potentiometric selectivity for diclofenac with respect to a number of interfering ions and organic species. The membrane sensor was successfully applied for the determination of diclofenac in wastewater samples and dosage form without sample pretreatment steps prior to its analysis. � 2018 Elsevier B.V.en_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=20922&tip=sid&clean=0
dc.identifier.doihttps://doi.org/10.1016/j.microc.2018.10.017
dc.identifier.doiPubMed ID :
dc.identifier.issn0026265X
dc.identifier.otherhttps://doi.org/10.1016/j.microc.2018.10.017
dc.identifier.otherPubMed ID :
dc.identifier.urihttps://t.ly/ve8KW
dc.language.isoEnglishen_US
dc.publisherElsevier Inc.en_US
dc.relation.ispartofseriesMicrochemical Journal
dc.relation.ispartofseries145
dc.subjectDiclofenacen_US
dc.subjectIon selective electrodeen_US
dc.subjectMagnetite nanoparticlesen_US
dc.subjectWastewateren_US
dc.titlePotentiometric diclofenac detection in wastewater using functionalized nanoparticlesen_US
dc.typeArticleen_US
dcterms.isReferencedByD?bska, J., Kot-Wasik, A., Namie?nik, J., Fate and analysis of pharmaceutical residues in the aquatic environment (2004) Crit. Rev. Anal. Chem., 34, pp. 51-67; Meijer, D., Wilting, J., Trends in the organization of drug research: interfacing industry and universities (1997) Eur. J. Pharm. Biopharm., 43, pp. 243-252; Mehinto, A.C., Hill, E.M., Tyler, C.R., Uptake and biological effects of environmentally relevant concentrations of the nonsteroidal anti-inflammatory pharmaceutical diclofenac in rainbow trout (Oncorhynchus mykiss) (2010) Environ. Sci. Technol., 44, pp. 2176-2182; Zhang, Y., Gei�en, S.-U., Gal, C., Carbamazepine and diclofenac: removal in wastewater treatment plants and occurrence in water bodies (2008) Chemosphere, 73, pp. 1151-1161; Verenitch, S.S., Lowe, C.J., Mazumder, A., Determination of acidic drugs and caffeine in municipal wastewaters and receiving waters by gas chromatography�ion trap tandem mass spectrometry (2006) J. Chromatogr. A, 1116, pp. 193-203; Deng, A., Himmelsbach, M., Zhu, Q.-Z., Frey, S., Sengl, M., Buchberger, W., Niessner, R., Knopp, D., Residue analysis of the pharmaceutical diclofenac in different water types using ELISA and GC?MS (2003) Environ. Sci. Technol., 37, pp. 3422-3429; Stafiej, A., Pyrzynska, K., Regan, F., Determination of anti-inflammatory drugs and estrogens in water by HPLC with UV detection (2007) J. Sep. Sci., 30, pp. 985-991; Debska, J., Kot-Wasik, A., Namiesnik, J., Determination of nonsteroidal antiinflammatory drugs in water samples using liquid chromatography coupled with diode-array detector and mass spectrometry (2005) J. Sep. Sci., 28, pp. 2419-2426; Kot-Wasik, A., D?bska, J., Wasik, A., Namie?nik, J., Determination of non-steroidal anti-inflammatory drugs in natural waters using off-line and on-line SPE followed by LC coupled with DAD-MS (2006) Chromatographia, 64, pp. 13-21; Zhang, Z., Zhou, J., Simultaneous determination of various pharmaceutical compounds in water by solid-phase extraction�liquid chromatography�tandem mass spectrometry (2007) J. Chromatogr. A, 1154, pp. 205-213; Almeida, S.A., Heitor, A., Montenegro, M., Sales, M.G.F., Sulfadiazine-selective determination in aquaculture environment: selective potentiometric transduction by neutral or charged ionophores (2011) Talanta, 85, pp. 1508-1516; Sousa, T., Amorim, C., Montenegro, M., Ara�jo, A., Cyclodextrin based potentiometric sensor for determination of ibuprofen in pharmaceuticals and waters (2013) Sensors Actuators B Chem., 176, pp. 660-666; Cunha, C.O., Silva, R.C., Amorim, C.G., Junior, S.A., Araujo, A.N., Montenegro, M.C., Silva, V.L., Tetracycline potentiometric sensor based on cyclodextrin for pharmaceuticals and waste water analysis (2010) Electroanalysis, 22, pp. 2967-2972; Rezk, M.R., Riad, S.M., Khattab, F.I., Marzouk, H.M., Electrochemical determination of ciprofloxacin hydrochloride in pharmaceutical formulation, aquatic environment and fish tissues (2013) Int. J. Biol. Pharm. Res., 4, pp. 390-396; Riad, S.M., Khattab, F.I., Salem, H., Elbalkiny, H.T., Ion-selective membrane sensors for the determination of ciprofloxacin hydrochloride in water and pharmaceutical formulation (2014) Anal. Bioanal. Electrochem., 6, pp. 559-572; Co?ofre, V.V., Buck, R.P., Recent advances in pharmaceutical analysis with potentiometric membrane sensors (1993) Crit. Rev. Anal. Chem., 24, pp. 1-58; K Gupta, V., Nayak, A., Agarwal, S., Singhal, B., Recent advances on potentiometric membrane sensors for pharmaceutical analysis (2011) Comb. Chem. High Throughput Screen., 14, pp. 284-302; Gupta, V.K., Karimi-Maleh, H., Sadegh, R., Simultaneous determination of hydroxylamine, phenol and sulfite in water and waste water samples using a voltammetric nanosensor (2015) Int. J. Electrochem. Sci., 10, pp. 303-316; Srivastava, S.K., Gupta, V.K., Dwivedi, M.K., Jain, S., Caesium PVC�crown (dibenzo-24-crown-8) based membrane sensor (1995) Anal. Proc. Incl. Anal. Commun., pp. 21-23; Gupta, V.K., Ganjali, M., Norouzi, P., Khani, H., Nayak, A., Agarwal, S., Electrochemical analysis of some toxic metals by ion�selective electrodes (2011) Crit. Rev. Anal. Chem., 41, pp. 282-313; Gupta, V.K., Singh, L., Singh, R., Upadhyay, N., Kaur, S., Sethi, B., A novel copper (II) selective sensor based on dimethyl 4,4?(o-phenylene)bis(3-thioallophanate) in PVC matrix (2012) J. Mol. Liq., 174, pp. 11-16; Srivastava, S.K., Gupta, V.K., Jain, S., PVC-based 2,2,2-cryptand sensor for zinc ions (1996) Anal. Chem., 68, pp. 1272-1275; Gupta, V.K., Kumar, S., Singh, R., Singh, L., Shoora, S., Sethi, B., Cadmium (II) ion sensing through p-tert-butyl calix[6]arene based potentiometric sensor (2014) J. Mol. Liq., 195, pp. 65-68; Gupta, V.K., Singh, A.K., Kumawat, L.K., Thiazole Schiff base turn-on fluorescent chemosensor for Al3+ ion (2014) Sensors Actuators B Chem., 195, pp. 98-108; Gupta, V.K., Mergu, N., Kumawat, L.K., Singh, A.K., Selective naked-eye detection of magnesium (II) ions using a coumarin-derived fluorescent probe (2015) Sensors Actuators B Chem., 207, pp. 216-223; Gupta, V.K., Mergu, N., Kumawat, L.K., Singh, A.K., A reversible fluorescence �off�on�off� sensor for sequential detection of aluminum and acetate/fluoride ions (2015) Talanta, 144, pp. 80-89; Kormosh, Z., Hunka, I., Bazel, Y., Kormosh, N., Laganovsky, A., Mazurenko, I., A new diclofenac membrane sensor based on its ion associate with crystal violet. Application to diclofenac determination in urine and pharmaceuticals (2007) J. Iran. Chem. Soc., 4, pp. 408-413; Hassan, S.S.M., AbdelAziz, R.M., AbdelSamad, M.S., Plastic membrane electrode for selective determination of diclofenac (voltaren) in pharmaceutical preparations (1994) Analyst, 119, pp. 1993-1996; Kormosh, Z., Hunka, I., Bazel, Y., Potentiometric determination of diclofenac in pharmaceutical formulation by membrane electrode based on ion associate with base dye (2007) Chin. Chem. Lett., 18, pp. 1103-1106; Santos, E.M., Ara�jo, A.N., Couto, C.M., Montenegro, M.C.B., Potentiometric behaviour of ion selective electrodes based on iron porphyrins: the influence of porphyrin substituents on the response properties and analytical determination of diclofenac in pharmaceutical formulations (2006) J. Pharm. Biomed. Anal., 42, pp. 535-542; Hassan, S.S., Mahmoud, W.H., Elmosallamy, M.A., Almarzooqi, M.H., Iron (II)-phthalocyanine as a novel recognition sensor for selective potentiometric determination of diclofenac and warfarin drugs (2005) J. Pharm. Biomed. Anal., 39, pp. 315-321; Kormosh, Z., Hunka, I., Bazel, Y., Laganovsky, A., Mazurenko, I., Kormosh, N., Determination of diclofenac in pharmaceuticals and urine samples using a membrane sensor based on the ion associate of diclofenac with Rhodamine B (2007) Cent. Eur. J. Chem., 5, pp. 813-823; Vlascici, D., Pruneanu, S., Olenic, L., Pogacean, F., Ostafe, V., Chiriac, V., Pica, E.M., Fagadar-Cosma, E., Manganese (III) porphyrin-based potentiometric sensors for diclofenac assay in pharmaceutical preparations (2010) Sensors, 10, pp. 8850-8864; Kormosh, Z.A., Hunka, I., Bazel, Y., An ion-selective sensor for assay of diclofenac in medicines (2009) Pharm. Chem. J., (7), pp. 428-430; Hassan, S.S., Mahmoud, W., Elmosallamy, M., Almarzooyi, M., Determination of diclofenac in pharmaceutical preparations using a novel PVC membrane sensor (2003) Pharmazie, 58, pp. 29-31; Kormosh, Z.A., Hunka, I., Bazel, Y.R., A potentiometric sensor for the determination of diclofenac (2009) J. Anal. Chem., 64, pp. 853-858; Kormosh, Z., Hunka, I., Bazel, Y., Preparation and characterization of a diclofenac sensitive electrode based on a PVC matrix membrane (2008) Acta Chim. Slov., 55; Lenik, J., A new potentiometric electrode incorporating functionalized ?-cyclodextrins for diclofenac determination (2014) Mater. Sci. Eng. C, 45, pp. 109-116; Santini, A., Pezza, H.R., Pezza, L., Determination of diclofenac in pharmaceutical preparations using a potentiometric sensor immobilized in a graphite matrix (2006) Talanta, 68, pp. 636-642; Brennan, E., Futvoie, P., Cassidy, J., Schazmann, B., An ionic liquid-based sensor for diclofenac determination in water (2017) Int. J. Environ. Anal. Chem., pp. 1-9; Gupta, V.K., Sethi, B., Sharma, R., Agarwal, S., Bharti, A., Mercury selective potentiometric sensor based on low rim functionalized thiacalix[4]-arene as a cationic receptor (2013) J. Mol. Liq., 177, pp. 114-118; Karimi-Maleh, H., Tahernejad-Javazmi, F., Atar, N., Yola, M.L.T., Gupta, V.K., Ensafi, A.A., A novel DNA biosensor based on a pencil graphite electrode modified with polypyrrole/functionalized multiwalled carbon nanotubes for determination of 6-mercaptopurine anticancer drug (2015) Ind. Eng. Chem. Res., 54, pp. 3634-3639; Yehia, A.M., Arafa, R.M., Abbas, S.S., Amer, S.M., Stability study and kinetic monitoring of cefquinome sulfate using cyclodextrin-based ion-selective electrode: application to biological samples (2016) J. AOAC Int., 99, pp. 73-81; Yehia, A.M., Monir, H.H., An umeclidinium membrane sensor; two-step optimization strategy for improved responses (2017) Talanta, 172, pp. 61-67; Yehia, A.M., Abo-Elhoda, S.E., Hassan, N., Badawey, A., Experimental validation of a computationally-designed tiotropium membrane sensor (2018) New J. Chem., 42, pp. 16354-16361; British Pharmacopoeia, The Stationery Office on Behalf of the Medicines and Healthcare Products Regulatory Agency (MHRA)-� Crown Copyright (2009); Harvey, F., Duncan, D., Walker, M., EPA Guide Line: Regulatory Monitoring and Testing Water and Wastewater Sampling (2007), E.p. authority South australia; IUPAC Analytical Chemistry Division, Commission on analytical nomenclature (2000) Pure Appl. Chem., 72, pp. 1851-2082; De Marco, R., Clarke, G., Pejcic, B., Ion-selective electrode potentiometry in environmental analysis (2007) Electroanalysis, 19, pp. 1987-2001; Mak, S.-Y., Chen, D.-H., Fast adsorption of methylene blue on polyacrylic acid-bound iron oxide magnetic nanoparticles (2004) Dyes Pigments, 61, pp. 93-98; Tudisco, C., Oliveri, V., Cantarella, M., Vecchio, G., Condorelli, G.G., Cyclodextrin anchoring on magnetic Fe3O4 nanoparticles modified with phosphonic linkers (2012) Eur. J. Inorg. Chem., 2012, pp. 5323-5331; Kiasat, A.R., Nazari, S., ?-Cyclodextrin conjugated magnetic nanoparticles as a novel magnetic microvessel and phase transfer catalyst: synthesis and applications in nucleophilic substitution reaction of benzyl halides (2013) J. Incl. Phenom. Macrocycl. Chem., 76, pp. 363-368; Hussein, L.A., El-Kosasy, A.M., Trabik, Y.A., Comparative study of normal, micro-& nano-sized iron oxide effect in potentiometric determination of fluconazole in biological fluids (2015) RSC Adv., 5, pp. 37957-37963; Guo, Z., Lei, K., Li, Y., Ng, H.W., Prikhodko, S., Hahn, H.T., Fabrication and characterization of iron oxide nanoparticles reinforced vinyl-ester resin nanocomposites (2008) Compos. Sci. Technol., 68, pp. 1513-1520; El-Kosasy, A.M., Tawakkol, S.M., Ayad, M.F., Sheta, A.I., A novel potentiometric detection strategy for the determination of amlodipine besylate based on functionalized particles (2014) Electroanalysis, 26, pp. 1031-1038; Kim, D., Zhang, Y., Voit, W., Rao, K., Muhammed, M., Synthesis and characterization of surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles (2001) J. Magn. Magn. Mater., 225, pp. 30-36; Song, D.A., Liang, R.N., Zhang, R.M., Ding, J.W., Zhang, J., Qin, W., Potentiometric detection of polyions based on functionalized magnetic nanoparticles (2010) Chin. Chem. Lett., 21, pp. 1378-1381
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
avatar_scholar_128.png
Size:
2.73 KB
Format:
Portable Network Graphics
Description: