Tecoma stans: Alkaloid profile and antimicrobial activity

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorBakr R.
dc.contributor.authorFayed M.
dc.contributor.authorSalem M.
dc.contributor.authorHussein A.
dc.contributor.otherPharmacognosy Department
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherOctober University for Modern Sciences and Arts (MSA)
dc.contributor.otherGiza
dc.contributor.otherEgypt; Pharmacognosy Department
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherUniversity of Sadat City
dc.contributor.otherEgypt; Pharmaceutical Chemistry Department
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherOctober University for Modern Sciences and Arts (MSA)
dc.contributor.otherGiza
dc.contributor.otherEgypt
dc.date.accessioned2020-01-09T20:40:32Z
dc.date.available2020-01-09T20:40:32Z
dc.date.issued2019
dc.descriptionScopus
dc.description.abstractAim: Tecoma stans (L.) Kunth is a promising species in the trumpet creeper family Bignoniaceae. This study aimed at showing the antibacterial and antifungal potentials of T. stans methanolic leaf extract (TSME) correlated to its phytoconstituents. Materials and Methods: The antimicrobial potential of TSME was evaluated using agar diffusion method. The main alkaloids were separated on silica gel column and identified using nuclear magnetic resonance spectral analysis. Molecular docking was performed for the isolated compounds against MurD ligase, penicillin-binding protein, and dihydropteroate synthase enzyme to rationalize the observed antibacterial effect. Results and Discussion: TSME showed significant antibacterial effect against all tested microorganisms with comparable minimum inhibitory concentration (MIC) to the ampicillin and gentamicin with MIC values ranging between 0.98 and 1.95 ?g/mL, in addition to a promising antifungal effect when compared to amphotericin with MIC values 3.9 and 15.63 ?g/mL for Aspergillus flavus and Candida albicans, respectively. Several alkaloids were separated, purified, and identified as tecostanine, 4-OH tecomanine, 5-hydroxyskytanthine, and tecomanine, which were previously isolated from T. stans. The docking study showed that the alkaloids bind in a similar fashion to the co-crystallized ligands of the crystal structures of MurD ligase. The binding poses and scores in the case of penicillin-binding protein and dihydropteroate synthase did not match the co-crystallized ligands in their crystal structures. The in silico results suggest an antibacterial mechanism that involves the inhibition of MurD ligase. Conclusion: T. stans alkaloids could represent the basic skeleton for a powerful antimicrobial agent. � 2019 Journal of Pharmacy and Bioallied Sciences.en_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=19700201144&tip=sid&clean=0
dc.identifier.doihttps://doi.org/10.4103/jpbs.JPBS_79_19
dc.identifier.doiPubMed ID :
dc.identifier.issn9757406
dc.identifier.otherhttps://doi.org/10.4103/jpbs.JPBS_79_19
dc.identifier.otherPubMed ID :
dc.identifier.urihttps://t.ly/jvgRD
dc.language.isoEnglishen_US
dc.publisherWolters Kluwer Medknow Publicationsen_US
dc.relation.ispartofseriesJournal of Pharmacy and Bioallied Sciences
dc.relation.ispartofseries11
dc.subjectOctober University for Modern Sciences and Arts
dc.subjectجامعة أكتوبر للعلوم الحديثة والآداب
dc.subjectUniversity of Modern Sciences and Arts
dc.subjectMSA University
dc.subjectAlkaloiden_US
dc.subjectantibacterialen_US
dc.subjectmolecular dockingen_US
dc.subjectTecoma stansen_US
dc.subject4 hydroxytecomanineen_US
dc.subject5 hydroxyskytanthineen_US
dc.subjectalkaloiden_US
dc.subjectamphotericin Ben_US
dc.subjectampicillinen_US
dc.subjectantibiotic agenten_US
dc.subjectantifungal agenten_US
dc.subjectbacterial proteinen_US
dc.subjectdihydropteroate synthaseen_US
dc.subjectgentamicinen_US
dc.subjectligaseen_US
dc.subjectMurD proteinen_US
dc.subjectpenicillin binding proteinen_US
dc.subjectplant extracten_US
dc.subjectsilica gelen_US
dc.subjectTecoma stans extracten_US
dc.subjecttecomanineen_US
dc.subjecttecostanineen_US
dc.subjectunclassified drugen_US
dc.subjectvancomycinen_US
dc.subjectagar diffusionen_US
dc.subjectantibacterial activityen_US
dc.subjectantifungal activityen_US
dc.subjectArticleen_US
dc.subjectAspergillus flavusen_US
dc.subjectBacillus subtilisen_US
dc.subjectCandida albicansen_US
dc.subjectclinical evaluationen_US
dc.subjectcomputer modelen_US
dc.subjectcrystal structureen_US
dc.subjectcrystallizationen_US
dc.subjectdrug isolationen_US
dc.subjectdrug mechanismen_US
dc.subjectdrug purificationen_US
dc.subjectenzyme inhibitionen_US
dc.subjectKlebsiella pneumoniaeen_US
dc.subjectminimum inhibitory concentrationen_US
dc.subjectmolecular dockingen_US
dc.subjectnonhumanen_US
dc.subjectnuclear magnetic resonance spectroscopyen_US
dc.subjectphase separationen_US
dc.subjectplant leafen_US
dc.subjectpriority journalen_US
dc.subjectPseudomonas aeruginosaen_US
dc.subjectStaphylococcus aureusen_US
dc.subjectTecoma stansen_US
dc.titleTecoma stans: Alkaloid profile and antimicrobial activityen_US
dc.typeArticleen_US
dcterms.isReferencedBySavoia, D., Plant-derived antimicrobial compounds: Alternatives to antibiotics (2012) Future Microbiol, 7, pp. 979-990; Maas, P.J.M., Flora neotropica (1986) Organ Flora Neotrop, 18, p. 225; Choudhury, S., Datta, S., Das Talukdar, A., Duttachoudhury, M., Phytochemistry of the Family Bignoniaceae-A review (2011) Assam Univ J Sci Technol Biol Environ Sci, 7, pp. 975-2773; Dickinson, E.M., Jones, G., Pyrindane alkaloids from Tecoma stans (1969) Tetrahedron, 25, pp. 1523-1529; Kunapuli, S.P., Vaidyanathan, C.S., Indolic compounds in the leaves of Tecoma stans (1984) Phytochemistry, 23, pp. 1826-1827; Lins, A.P., Felicio, J.D.A., Monoterpene alkaloids from Tecoma stans (1993) Phytochemistry, 34, pp. 876-878; Costantino, L., Raimondi, L., Pirisino, R., Brunetti, T., Pessotto, P., Giannessi, F., Isolation and pharmacological activities of the Tecoma stans alkaloids (2003) Farmaco, 58, pp. 781-785; Marzouk, M., Gamal-Eldeen, A., Mohamed, M., El-Sayed, M., Anti-proliferative and antioxidant constituents from Tecoma stans (2006) Z Naturforsch C, 61, pp. 783-791; Marzouk, M.S.A., Gamal-Eldeenb, A.M., Mohamed, M.A., El-Sayed, M., Antioxidant and anti-proliferative active constituents of Tecoma stans against tumor cell lines (2006) Nat Prod Commun, 1, pp. 735-743; Aguilar-Santamar�a, L., Ram�rez, G., Nicasio, P., Alegr�a-Reyes, C., Herrera-Arellano, A., Antidiabetic activities of Tecoma stans (L.) Juss. Ex Kunth (2009) J Ethnopharmacol, 124, pp. 284-288; Govindappa, M., Sadananda, T.S., Channabasava, R., Raghavendra, V.B., In vitro anti-inflammatory, lipoxygenase, xanthine oxidase and acetycholinesterase inhibitory activity of Tecoma stans (L.) Juss. Ex Kunth (2011) Int J Pharma Bio Sci, 2, pp. 275-285; Al-Azzawi, A.M., Al-Khateeb, E., Al-Sameraei, K., Al-Juboori, A.G., Antibacterial activity and the histopathological study of crude extracts and isolated tecomine from Tecoma stans Bignoniaceae in Iraq (2012) Pharmacognosy Res, 4, pp. 37-43; Senthilkumar, C.S., Kumar, M.S., Pandian, M.R., In vitro antibacterial activity of crude leaf extracts from Tecoma stans (L) Juss. et Kunth, Coleus forskohlii and Pogostemon patchouli against human pathogenic bacteria (2010) Int J Pharm Tech Res, 2, pp. 438-442; Mickymaray, S., Al Aboody, M.S., Rath, P.K., Annamalai, P., Nooruddin, T., Screening and antibacterial efficacy of selected Indian medicinal plants (2016) Asian Pac J Trop Biomed, 6, pp. 185-191; Valgas, C., De Souza, S.M., Sm�nia, E.F.A., Sm�nia, J.A., Screening methods to determine antibacterial activity of natural products (2007) Brazilian J Microbiol, 38, pp. 369-380; Princy, K.R., Sripathi, R., Dharani, J., Ravi, S., Molecular docking studies of alkaloids from Desmodium triflorum against bacterial proteins (2017) J Pharm Sci Res, 9, pp. 1882-1885; Bertrand, J.A., Auger, G., Fanchon, E., Martin, L., Blanot, D., Van Heijenoort, J., Crystal structure of UDP-Nacetylmuramoyl-L-alanine:D-glutamate ligase from Escherichia coli (1997) Embo J, 16, pp. 3416-3425; Zidar, N., Tomasi?, T., Sink, R., Rupnik, V., Kovac, A., Turk, S., Discovery of novel 5-benzylidenerhodanine and 5-benzylidenethiazolidine-2, 4-dione inhibitors of MurD ligase (2010) J Med Chem, 53, pp. 6584-6594; Han, S., Caspers, N., Zaniewski, R.P., Lacey, B.M., Tomaras, A.P., Feng, X., Distinctive attributes of ?-lactam target proteins in Acinetobacter baumannii relevant to development of new antibiotics (2011) J Am Chem Soc, 133, pp. 20536-20545; Yun, M.K., Wu, Y., Li, Z., Zhao, Y., Waddell, M.B., Ferreira, A.M., Catalysis and sulfa drug resistance in dihydropteroate synthase (2012) Science, 335, pp. 1110-1114; Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility (2009) J Comput Chem, 30, pp. 2785-2791; Biovia, D.S., (2017) Discovery Studio Visualizer, , San Diego, CA, USA; Gellatly, S.L., Hancock, R.E., Pseudomonas aeruginosa: New insights into pathogenesis and host defenses (2013) Pathog Dis, 67, pp. 159-173; Hidayah, N., Review article Salmonella: A foodborne pathogen (2011) Int Food Res J, 473, pp. 465-473; Cardoso, O., Alves, A.F., Leit�o, R., Surveillance of antimicrobial susceptibility of Pseudomonas aeruginosa clinical isolates from a central hospital in Portugal (2007) J Antimicrob Chemother, 60, pp. 452-454; Vila, J., S�ez-L�pez, E., Johnson, J.R., R�mling, U., Dobrindt, U., Cant�n, R., Escherichia coli: An old friend with new tidings (2016) FEMS Microbiol Rev, 40, pp. 437-463; Paczosa, M.K., Mecsas, J., Klebsiella pneumoniae: Going on the offense with a strong defense (2016) Microbiol Mol Biol Rev, 80, pp. 629-661; Nielsen, T.R.H., Kuete, V., J�ger, A.K., Marion Meyer, J.J., Lall, N., Antimicrobial activity of selected South African medicinal plants (2012) BMC Complement Altern Med, 12, p. 1086; Thomer, L., Schneewind, O., Missiakas, D., Pathogenesis of Staphylococcus aureus bloodstream infections (2016) Annu Rev Pathol, 11, pp. 343-364; Henriques-Normark, B., Tuomanen, E.I., The pneumococcus: Epidemiology, microbiology, and pathogenesis (2013) Cold Spring Harb Perspect Med, 3, p. a010215; Mayer, F.L., Wilson, D., Hube, B., Candida albicans pathogenicity mechanisms (2013) Virulence, 4, pp. 119-128; Costantino, L., Lins, A.P., Barlocco, D., Celotti, F., El-Abady, S.A., Brunetti, T., Characterization and pharmacological actions of tecostanine, an alkaloid of Tecoma stans (2003) Pharmazie, 58, pp. 140-142; Nicola, G., Abagyan, R., Structure-based approaches to antibiotic drug discovery (2009) Current Protocols in Microbiology, , Hoboken NJ: John Wiley & Sons Unit 17.2; Griffith, E.C., Wallace, M.J., Wu, Y., Kumar, G., Gajewski, S., Jackson, P., The structural and functional basis for recurring sulfa drug resistance mutations in Staphylococcus aureus dihydropteroate synthase (2018) Front Microbiol, 9, p. 1369; Otzen, T., Wempe, E.G., Kunz, B., Bartels, R., Lehwark-Yvetot, G., H�nsel, W., Folate-synthesizing enzyme system as target for development of inhibitors and inhibitor combinations against Candida albicans-synthesis and biological activity of new 2, 4-diaminopyrimidines and 4'-substituted 4-aminodiphenyl sulfones (2004) J Med Chem, 47, pp. 240-253; Zervosen, A., Sauvage, E., Fr�re, J.M., Charlier, P., Luxen, A., Development of new drugs for an old target: The penicillin binding proteins (2012) Molecules, 17, pp. 12478-12505; Meng, X.Y., Zhang, H.X., Mezei, M., Cui, M., Molecular docking: A powerful approach for structure-based drug discovery (2011) Curr Comput Aided Drug des, 7, pp. 146-157
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description: