Novel self-nanoemulsifying self-nanosuspension (SNESNS) for enhancing oral bioavailability of diacerein: Simultaneous portal blood absorption and lymphatic delivery
dc.Affiliation | October University for modern sciences and Arts (MSA) | |
dc.contributor.author | El-Laithy H.M. | |
dc.contributor.author | Basalious E.B. | |
dc.contributor.author | El-Hoseiny B.M. | |
dc.contributor.author | Adel M.M. | |
dc.contributor.other | Department of Pharmaceutics and Industrial Pharmacy | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | Cairo University | |
dc.contributor.other | Cairo | |
dc.contributor.other | Egypt; Department of Pharmaceutics and Industrial Pharmacy | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | October University for Modern Sciences and Arts (MSA) | |
dc.contributor.other | Cairo | |
dc.contributor.other | Egypt; Duuepartment of Pharmaceutics | |
dc.contributor.other | National Organization for Drug Control and Research | |
dc.contributor.other | Cairo | |
dc.contributor.other | Egypt | |
dc.date.accessioned | 2020-01-09T20:41:50Z | |
dc.date.available | 2020-01-09T20:41:50Z | |
dc.date.issued | 2015 | |
dc.description | Scopus | |
dc.description.abstract | The application of self-nanoemulsified drug delivery system (SNEDDS) to improve bioavailability of diacerein (D) has been hampered by its large dose and limited solubility. This work aimed to prepare diacerein loaded self nanoemulsifying self nanosuspension (D-SNESNS) containing high drug load. D-SNESNS was prepared by homogenizing D into Maisine-based SNEDDS that gave the highest drug solubility. D-SNESNS was evaluated for particle size, zeta potential and in vitro dissolution. Significant increase of D solubility was observed from D-SNESNS (?309 ?g/mL) than traditional SNEDDS (?162 ?g/mL) due to the spontaneous simultaneous formation of nanoemulsion and nanosuspension (top-down approach). When exposed to water with mild agitation, the drug microparticles in D-SNESNS are temporarily surrounded by unsaturated aqueous layer (containing optimum concentrations of surfactant and co-solvent) that facilitates the erosion of the suspended drug particles into nanosized ones. Nanoemulsion-based nanosuspension (NENS) was confirmed using transmission electron microscopy and particle size analysis. D-SNESNS equivalent to 50 mg D exhibited complete and very rapid dissolution after 15 min in phosphate buffer pH 6.8 due to the existence of D as solubilized molecules inside nanoemulsion globules and nanosized suspended drug particles forming D-NENS. The relative bioavailabilities of rhein from D-SNESNS in rats with normal and blocked chylomicron flow were about 210% and 164%, respectively in comparison to aqueous D suspension. The significant increase in the dissolution, portal absorption and lymphatic delivery of D propose that SNESNS could be promising to improve oral bioavailability of poorly water soluble drugs that have limited drug load in SNEDDS. 2015 Elsevier B.V. All rights reserved. | en_US |
dc.description.uri | https://www.scimagojr.com/journalsearch.php?q=22454&tip=sid&clean=0 | |
dc.identifier.doi | https://doi.org/10.1016/j.ijpharm.2015.05.039 | |
dc.identifier.doi | PubMed ID 26002566 | |
dc.identifier.issn | 3785173 | |
dc.identifier.other | https://doi.org/10.1016/j.ijpharm.2015.05.039 | |
dc.identifier.other | PubMed ID 26002566 | |
dc.identifier.uri | https://t.ly/1VM95 | |
dc.language.iso | English | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.ispartofseries | International Journal of Pharmaceutics | |
dc.relation.ispartofseries | 490 | |
dc.subject | Blocked chylomicron flow | en_US |
dc.subject | Diacerein | en_US |
dc.subject | Lymphatic delivery | en_US |
dc.subject | Portal absorption | en_US |
dc.subject | Self-nanoemulsifying self-nanosuspension | en_US |
dc.subject | SNESNS | en_US |
dc.subject | chylomicron | en_US |
dc.subject | diacerein | en_US |
dc.subject | phosphate buffered saline | en_US |
dc.subject | rhein | en_US |
dc.subject | surfactant | en_US |
dc.subject | water | en_US |
dc.subject | anthraquinone derivative | en_US |
dc.subject | diacerein | en_US |
dc.subject | drug carrier | en_US |
dc.subject | emulsion | en_US |
dc.subject | nanoparticle | en_US |
dc.subject | rhein | en_US |
dc.subject | surfactant | en_US |
dc.subject | suspension | en_US |
dc.subject | agitation | en_US |
dc.subject | Article | en_US |
dc.subject | drug absorption | en_US |
dc.subject | drug bioavailability | en_US |
dc.subject | drug blood level | en_US |
dc.subject | drug delivery system | en_US |
dc.subject | drug elimination | en_US |
dc.subject | drug half life | en_US |
dc.subject | drug solubility | en_US |
dc.subject | drug synthesis | en_US |
dc.subject | elimination rate constant | en_US |
dc.subject | erosion | en_US |
dc.subject | in vitro study | en_US |
dc.subject | in vivo study | en_US |
dc.subject | lymph vessel | en_US |
dc.subject | maximum plasma concentration | en_US |
dc.subject | nanoemulsion | en_US |
dc.subject | particle size | en_US |
dc.subject | pH | en_US |
dc.subject | priority journal | en_US |
dc.subject | suspension | en_US |
dc.subject | time to maximum plasma concentration | en_US |
dc.subject | transmission electron microscopy | en_US |
dc.subject | zeta potential | en_US |
dc.subject | administration and dosage | en_US |
dc.subject | animal | en_US |
dc.subject | bioavailability | en_US |
dc.subject | chemistry | en_US |
dc.subject | classification | en_US |
dc.subject | drug delivery system | en_US |
dc.subject | emulsion | en_US |
dc.subject | male | en_US |
dc.subject | medicinal chemistry | en_US |
dc.subject | oral drug administration | en_US |
dc.subject | pharmacokinetics | en_US |
dc.subject | procedures | en_US |
dc.subject | rat | en_US |
dc.subject | solubility | en_US |
dc.subject | suspension | en_US |
dc.subject | Wistar rat | en_US |
dc.subject | Administration, Oral | en_US |
dc.subject | Animals | en_US |
dc.subject | Anthraquinones | en_US |
dc.subject | Biological Availability | en_US |
dc.subject | Chemistry, Pharmaceutical | en_US |
dc.subject | Drug Carriers | en_US |
dc.subject | Drug Delivery Systems | en_US |
dc.subject | Emulsions | en_US |
dc.subject | Male | en_US |
dc.subject | Nanoparticles | en_US |
dc.subject | Particle Size | en_US |
dc.subject | Rats | en_US |
dc.subject | Rats, Wistar | en_US |
dc.subject | Solubility | en_US |
dc.subject | Surface-Active Agents | en_US |
dc.subject | Suspensions | en_US |
dc.title | Novel self-nanoemulsifying self-nanosuspension (SNESNS) for enhancing oral bioavailability of diacerein: Simultaneous portal blood absorption and lymphatic delivery | en_US |
dc.type | Article | en_US |
dcterms.isReferencedBy | Aggarwal, A.K., Singh, S., Physicochemical characterization and dissolution study of solid dispersions of diacerein with polyethylene glycol 6000 (2011) Drug Dev. Ind. Pharm., 37, pp. 1181-1191; Balakrishnan, P., Lee, B.J., Oh, D.H., Kim, J.O., Hong, M.J., Jee, J.P., Kim, J.A., Choi, H.G., Enhanced oral bioavailability of dexibuprofen by a novel solid self-emulsifying drug delivery system (SEDDS) (2009) Eur. J. Pharm. Biopharm., 72, pp. 539-545; Basalious, E.B., Shawky, N., Badr-Eldin, S.M., SNEDDS containing bioenhancers for improvement of dissolution and oral absorption of lacidipine. I: Development and optimization (2010) Int. J. Pharm., 391, pp. 203-211; Bello, V., Mattei, G., Mazzoldi, P., Vivenza, N., Gasco, P., Idee, J.M., Robic, C., Borsella, E., Transmission electron microscopy of lipid vesicles for drug delivery: Comparison between positive and negative staining (2010) Microsc. Microanal., 16, pp. 456-461; Buggins, T.R., Dickinson, P.A., Taylor, G., The effects of pharmaceutical excipients on drug disposition (2007) Adv. Drug Deliv. Rev., 59, pp. 1482-1503; Chen, M.L., Lipid excipients and delivery systems for pharmaceutical development: A regulatory perspective (2008) Adv. Drug Deliv. Rev., 60, pp. 768-777; Dahan, A., Hoffman, A., Evaluation of a chylomicron flow blocking approach to investigate the intestinal lymphatic transport of lipophilic drugs (2005) Eur. J. Pharm. Biopharm., 24, pp. 381-388; El-Laithy, H.M., Self-nanoemulsifying drug delivery system for enhanced bioavailability and improved hepatoprotective activity of biphenyl dimethyl dicarboxylate (2008) Curr. Drug Deliv., 5, pp. 170-176; Elkasabgy, N.A., Ocular supersaturated self-nanoemulsifying drug delivery systems (S-SNEDDS) to enhance econazole nitrate bioavailability (2014) Int. J. Pharm., 460, pp. 33-44; Elsayed, I., Abdelbary, A.A., Elshafeey, A.H., Nanosizing of a poorly soluble drug: Technique optimization factorial analysis, and pharmacokinetic study in healthy human volunteers (2014) Int. J. Nanomed., 9, pp. 2943-2953; Fouad, S.A., Basalious, E.B., El-Nabarawi, M.A., Tayel, S.A., Microemulsion and poloxamer microemulsion-based gel for sustained transdermal delivery of diclofenac epolamine using in-skin drug depot: In vitro/in vivo evaluation (2013) Int. J. Pharm., 453, pp. 569-578; Holm, R., Mullertz, A., Christensen, E., Hoy, C.E., Kristensen, H.G., Comparison of total oral bioavailability and the lymphatic transport of halofantrine from three different unsaturated triglycerides in lymph-cannulated conscious rats (2001) Eur. J. Pharm. Sci., 14, pp. 331-337; Hong, J.Y., Kim, J.K., Song, Y.K., Park, J.S., Kim, C.K., A new self-emulsifying formulation of itraconazole with improved dissolution and oral absorption (2006) J. Control. Release, 110, pp. 332-338; Jain, A., Mishra, S.K., Vuddanda, P.R., Singh, S.K., Singh, R., Singh, S., Targeting of diacerein loaded lipid nanoparticles to intra-articular cartilage using chondroitin sulfate as homing carrier for treatment of osteoarthritis in rats (2014) Nanomed.: Nanotechnol. Biol. Med., 10, pp. 1031-1040; Jain, A., Singh, S.K., Singh, Y., Singh, S., Development of lipid nanoparticles of diacerein, an antiosteoarthritic drug for enhancement in bioavailability and reduction in its side effects (2013) J. Biomed. Nanotechnol., 9, pp. 891-900; Lind, M.L., Jacobsen, J., Holm, R., Mullertz, A., Intestinal lymphatic transport of halofantrine in rats assessed using a chylomicron flow blocking approach: The influence of polysorbate 60 and 80 (2008) Eur. J. Pharm. Sci., 35, pp. 211-218; Nicolas, P., Tod, M., Padoin, C., Petitjean, O., Clinical pharmacokinetics of diacerein (1998) Clin. Pharmacokinet., 35, pp. 347-359; Ojha, A., Rathod, R., Padh, H., Simultaneous HPLC-UV determination of rhein and aceclofenac in human plasma (2009) J. Chromatogr. B Anal. Technol. Biomed. Life Sci., 877, pp. 1145-1148; Patel, V.R., Agrawal, Y.K., Nanosuspension: An approach to enhance solubility of drugs (2011) J. Adv. Pharm. Technol. Res., 2, pp. 81-87; Patravale, V.B., Date, A.A., Kulkarni, R.M., Nanosuspensions: A promising drug delivery strategy (2004) J. Pharm. Pharmacol., 56, pp. 827-840; Porter, C.J., Charman, W.N., Intestinal lymphatic drug transport: An update (2001) Adv. Drug Deliv. Rev., 50, pp. 61-80; Seeballuck, F., Lawless, E., Ashford, M.B., O'Driscoll, C.M., Stimulation of triglyceride-rich lipoprotein secretion by polysorbate 80: In vitro and in vivo correlation using Caco-2 cells and a cannulated rat intestinal lymphatic model (2004) Pharm. Res., 21, pp. 2320-2326; Shanmugam, S., Park, J.H., Kim, K.S., Piao, Z.Z., Yong, C.S., Choi, H.G., Woo, J.S., Enhanced bioavailability and retinal accumulation of lutein from self-emulsifying phospholipid suspension (SEPS) (2011) Int. J. Pharm., 412, pp. 99-105; Shen, H., Zhong, M., Preparation and evaluation of self-microemulsifying drug delivery systems (SMEDDS) containing atorvastatin (2006) J. Pharm. Pharmacol., 58, pp. 1183-1191; Shono, Y., Nishihara, H., Matsuda, Y., Furukawa, S., Okada, N., Fujita, T., Yamamoto, A., Modulation of intestinal P-glycoprotein function by cremophor EL and other surfactants by an in vitro diffusion chamber method using the isolated rat intestinal membranes (2004) J. Pharm. Sci., 93, pp. 877-885; Trevaskis, N.L., Charman, W.N., Porter, C.J., Lipid-based delivery systems and intestinal lymphatic drug transport: A mechanistic update (2008) Adv. Drug Deliv. Rev., 60, pp. 702-716; Trotta, M., Gallarate, M., Carlotti, M.E., Morel, S., Preparation of griseofulvin nanoparticles from water-dilutable microemulsions (2003) Int. J. Pharm., 254, pp. 235-242; Wang, L., Dong, J., Chen, J., Eastoe, J., Li, X., Design and optimization of a new self-nanoemulsifying drug delivery system (2009) J. Colloid Interface Sci., 330, pp. 443-448; Wang, Z., Sun, J., Wang, Y., Liu, X., Liu, Y., Fu, Q., Meng, P., He, Z., Solid self-emulsifying nitrendipine pellets: Preparation and in vitro/in vivo evaluation (2010) Int. J. Pharm., 383, pp. 1-6; Zhang, P., Liu, Y., Feng, N., Xu, J., Preparation and evaluation of self-microemulsifying drug delivery system of oridonin (2008) Int. J. Pharm., 355, pp. 269-276; Zhao, Y., Wang, C., Chow, A.H., Ren, K., Gong, T., Zhang, Z., Zheng, Y., Self-nanoemulsifying drug delivery system (SNEDDS) for oral delivery of Zedoary essential oil: Formulation and bioavailability studies (2010) Int. J. Pharm., 383, pp. 170-177 | |
dcterms.source | Scopus |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- avatar_scholar_128.png
- Size:
- 2.73 KB
- Format:
- Portable Network Graphics
- Description: