Electrochemical behavior of Al 2 O 3 /Al composite coated Al electrodes through surface mechanical alloying in alkaline media

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorEbrahim M.R.
dc.contributor.authorShehata O.S.
dc.contributor.authorAbdel Fatah A.H.
dc.contributor.otherSolid State Department
dc.contributor.otherPhysics Division
dc.contributor.otherNational Research Centre
dc.contributor.otherDokki
dc.contributor.otherP.O. 12622
dc.contributor.otherGiza
dc.contributor.otherEgypt; Physical Chemistry Department
dc.contributor.otherNational Research Centre
dc.contributor.otherDokki
dc.contributor.otherP.O. 12622
dc.contributor.otherGiza
dc.contributor.otherEgypt; Faculty of Biotechnology
dc.contributor.otherModern Science and Arts University
dc.contributor.otherOctober City
dc.contributor.otherGiza 6
dc.contributor.otherEgypt
dc.date.accessioned2020-01-09T20:40:38Z
dc.date.available2020-01-09T20:40:38Z
dc.date.issued2019
dc.descriptionScopus
dc.description.abstractThe behavior of Al 2 O 3 /Al composite coated Al electrodes fabricated by surface mechanical alloying 'sMA� was studied. The work was accomplished using Cyclic voltammetry and electrochemical impedance spectroscopy (EIS) techniques in alkaline media 2MKOH were done at room temperature. Results show hydroxyl ions accumulate on the surface due to Al deformation micro cavities filling with Al 2 O 3 until full charge blockage reached. A barrier cover layer development causing an increase of both resistance and capacitance as it becomes more stable and thinner with exposure time increase. Migrating hydroxyl ion inside micro cavity changed its composition from Al 2 O 3 to stable tetrahedral Al(OH) 4 ? aluminate ions. Therefore future benefits could be reached by developing such surfaces having charge accumulation that enables environmental interaction. � 2019 Korean Physical Societyen_US
dc.identifier.doihttps://doi.org/10.1016/j.cap.2019.01.005
dc.identifier.doiPubMedID
dc.identifier.issn15671739
dc.identifier.otherhttps://doi.org/10.1016/j.cap.2019.01.005
dc.identifier.otherPubMedID
dc.identifier.urihttps://t.ly/8ppE3
dc.language.isoEnglishen_US
dc.publisherInternational Journal of Pharmacognosy and Phytochemical Research
dc.publisherElsevier B.V.en_US
dc.relation.ispartofseriesCurrent Applied Physics
dc.relation.ispartofseries19
dc.subjectOctober University for Modern Sciences and Arts
dc.subjectجامعة أكتوبر للعلوم الحديثة والآداب
dc.subjectUniversity of Modern Sciences and Arts
dc.subjectMSA University
dc.subjectCyclic voltammetryen_US
dc.subjectElectrochemical impedance spectroscopyen_US
dc.subjectSurface compositesen_US
dc.subjectSurface mechanical alloyingen_US
dc.subjectAluminaen_US
dc.subjectAluminum coatingsen_US
dc.subjectAluminum oxideen_US
dc.subjectCyclic voltammetryen_US
dc.subjectElectrochemical impedance spectroscopyen_US
dc.subjectIonsen_US
dc.subjectMechanical alloyingen_US
dc.subjectMicrocavitiesen_US
dc.subjectSodium Aluminateen_US
dc.subjectSpectroscopyen_US
dc.subjectAlkaline mediaen_US
dc.subjectAluminate ionsen_US
dc.subjectCharge accumulationen_US
dc.subjectElectrochemical behaviorsen_US
dc.subjectEnvironmental interactionsen_US
dc.subjectExposure-timeen_US
dc.subjectFuture benefitsen_US
dc.subjectSurface compositesen_US
dc.subjectElectrochemical electrodesen_US
dc.titleElectrochemical behavior of Al 2 O 3 /Al composite coated Al electrodes through surface mechanical alloying in alkaline mediaen_US
dc.typeArticleen_US
dcterms.isReferencedByTa, N.R., Lu, J., Lu, K., Surface nanocrystallization by surface mechanical attrition treatment (2008) Mater. Sci. Forum, 579, pp. 91-108; Lu, K., Lu, J., Surface nanocrystallization of metallic materials-presentation of the concepts behind a new approach (1999) J. Mater. Sci. Technol., 15-3, pp. 193-197. , https://www.scopus.com/record/display.uri?eid=2-s2.0-0000506802&origin=recordpage; Sato, M., Tsuji, N., Minamino, Y., Koizumi, Y., Formation of nanocrystalline surface layers in various metallic materials by near surface severe plastic deformation (2004) Sci. Technol. Adv. Mater., 5, pp. 145-152; Abouelsayed, A., Ebrahim, M.R., El hotaby, W., Hassan, S.A., Al-Ashkar Terhertz, E., Acoustic phonon detection from a compact surface layer of spherical nanoparticles powder mixture of aluminum, alumina and multi-walled carbon nanotube (2017) Spectrochim. Acta A Mol. Biomol. Spectrosc., 185, pp. 179-187; Ebrahim, M.R., El Meleigy, A.E., Abd Elhamid, S.E., El Warraky, A.A., Improving corrosion resistance of Al through sever plastic deformation 1- under Free condition, Egypt (2016) J. Chem., 59-4, pp. 537-555; El Meleigy, A.E., Ebrahim, M.R., Abd El Hamid, S.E., El Warraky, A.A., Improving corrosion resistance of Al through sever plastic deformation 2- under Accelerated condition, Egypt (2016) J. Chem., 59-4, pp. 557-571; Vlassiouk, I., Krasnoslobodtsev, A., Smirnov, S., Germann, M., Direct detection and separation of DNA using nanoporous alumina filters (2004) Langmuir, 20-23, pp. 9913-9915; Santos, A., Kumeria, T., Losic, D., Nanoporous anodic aluminum oxide for chemical sensing and biosensors (2013) Trends Anal. Chem., 44, pp. 25-38; Ingham, C.J., ter Maat, J., M de Vos, W., Where bio meets nano: the many uses for nano-porous aluminum oxide in biotechnology (2012) Biotechnol. Adv., 30, pp. 1089-1099; Scully, J.R., Characterization of the corrosion of aluminum thim film using electrochemical impedance methods (1993) Electrochemical Impedance: Analysis and Interpretation, ASTM STP 1188, p. 276. , J.R. Scully D.D. Silverman M.W. Kendig; El-Taib Heakal, F., Shehata, O.S., Tantawy, N.S., Enhanced corrosion resistance of magnesium alloy AM60 by cerium (III) in chloride solution (2012) Corros. Sci., 56, pp. 86-95; Wernick, S., Pinner, R., Sheasby, P.G., (1987) The Surface Treatment and Finishing of Aluminum and its Alloys, 2. , fifth ed. ASM International Metals Park OH; Leibig, M., Halsey, T.C., The Double Layer Impedance as a probe of surface roughness (1993) Electrochim. Acta, 38-14, pp. 1985-1988; Moon, S.M., Pyun, S.I., The corrosion of pure aluminium during cathodic polarization in aqueous solutions (1997) Corros. Sci., 39-2, pp. 399-408; Alber Cotton, F., Wilkinson, G., Carlos, A., Murillo, Bochmann, M., Advanced Inorganic Chemistry (2007), sixth ed. Wiley India; Seli, H., Awang, M., Ismail, A.I.M., Rachman, E., Ahmad, Z.A., Evaluation of properties and FEM model of the friction welded mild steel-Al6061�alumina (2013) Mater. Res., 16-2, pp. 453-467; Aleksandrov, Y.A., Tsyganova, E.I., Pisarev, A.L., Reactions of aluminum with dilute aqueous NaOH solutions (2003) Russ. J. Gen. Chem., 73-5, pp. 689-694; Kuznetsova, A., Burleigh, T.D., Zhukov, V., Blachere, J., Yates, J.T., Jr., Electrochemical evaluation of a new type of corrosion passivation layer: artificially produced Al 2 O 3 films on aluminum (1998) Langmuir, 14-9, pp. 2502-2507; Moon, S.-M., Su-II pyun, the formation and dissolution of anodic oxide films on pure aluminum in alkaline solution (1999) Electrochem. Acta, 44, pp. 2445-2454
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description: