Electrochemical behavior of Al 2 O 3 /Al composite coated Al electrodes through surface mechanical alloying in alkaline media
dc.Affiliation | October University for modern sciences and Arts (MSA) | |
dc.contributor.author | Ebrahim M.R. | |
dc.contributor.author | Shehata O.S. | |
dc.contributor.author | Abdel Fatah A.H. | |
dc.contributor.other | Solid State Department | |
dc.contributor.other | Physics Division | |
dc.contributor.other | National Research Centre | |
dc.contributor.other | Dokki | |
dc.contributor.other | P.O. 12622 | |
dc.contributor.other | Giza | |
dc.contributor.other | Egypt; Physical Chemistry Department | |
dc.contributor.other | National Research Centre | |
dc.contributor.other | Dokki | |
dc.contributor.other | P.O. 12622 | |
dc.contributor.other | Giza | |
dc.contributor.other | Egypt; Faculty of Biotechnology | |
dc.contributor.other | Modern Science and Arts University | |
dc.contributor.other | October City | |
dc.contributor.other | Giza 6 | |
dc.contributor.other | Egypt | |
dc.date.accessioned | 2020-01-09T20:40:38Z | |
dc.date.available | 2020-01-09T20:40:38Z | |
dc.date.issued | 2019 | |
dc.description | Scopus | |
dc.description.abstract | The behavior of Al 2 O 3 /Al composite coated Al electrodes fabricated by surface mechanical alloying 'sMA� was studied. The work was accomplished using Cyclic voltammetry and electrochemical impedance spectroscopy (EIS) techniques in alkaline media 2MKOH were done at room temperature. Results show hydroxyl ions accumulate on the surface due to Al deformation micro cavities filling with Al 2 O 3 until full charge blockage reached. A barrier cover layer development causing an increase of both resistance and capacitance as it becomes more stable and thinner with exposure time increase. Migrating hydroxyl ion inside micro cavity changed its composition from Al 2 O 3 to stable tetrahedral Al(OH) 4 ? aluminate ions. Therefore future benefits could be reached by developing such surfaces having charge accumulation that enables environmental interaction. � 2019 Korean Physical Society | en_US |
dc.identifier.doi | https://doi.org/10.1016/j.cap.2019.01.005 | |
dc.identifier.doi | PubMedID | |
dc.identifier.issn | 15671739 | |
dc.identifier.other | https://doi.org/10.1016/j.cap.2019.01.005 | |
dc.identifier.other | PubMedID | |
dc.identifier.uri | https://t.ly/8ppE3 | |
dc.language.iso | English | en_US |
dc.publisher | International Journal of Pharmacognosy and Phytochemical Research | |
dc.publisher | Elsevier B.V. | en_US |
dc.relation.ispartofseries | Current Applied Physics | |
dc.relation.ispartofseries | 19 | |
dc.subject | October University for Modern Sciences and Arts | |
dc.subject | جامعة أكتوبر للعلوم الحديثة والآداب | |
dc.subject | University of Modern Sciences and Arts | |
dc.subject | MSA University | |
dc.subject | Cyclic voltammetry | en_US |
dc.subject | Electrochemical impedance spectroscopy | en_US |
dc.subject | Surface composites | en_US |
dc.subject | Surface mechanical alloying | en_US |
dc.subject | Alumina | en_US |
dc.subject | Aluminum coatings | en_US |
dc.subject | Aluminum oxide | en_US |
dc.subject | Cyclic voltammetry | en_US |
dc.subject | Electrochemical impedance spectroscopy | en_US |
dc.subject | Ions | en_US |
dc.subject | Mechanical alloying | en_US |
dc.subject | Microcavities | en_US |
dc.subject | Sodium Aluminate | en_US |
dc.subject | Spectroscopy | en_US |
dc.subject | Alkaline media | en_US |
dc.subject | Aluminate ions | en_US |
dc.subject | Charge accumulation | en_US |
dc.subject | Electrochemical behaviors | en_US |
dc.subject | Environmental interactions | en_US |
dc.subject | Exposure-time | en_US |
dc.subject | Future benefits | en_US |
dc.subject | Surface composites | en_US |
dc.subject | Electrochemical electrodes | en_US |
dc.title | Electrochemical behavior of Al 2 O 3 /Al composite coated Al electrodes through surface mechanical alloying in alkaline media | en_US |
dc.type | Article | en_US |
dcterms.isReferencedBy | Ta, N.R., Lu, J., Lu, K., Surface nanocrystallization by surface mechanical attrition treatment (2008) Mater. Sci. Forum, 579, pp. 91-108; Lu, K., Lu, J., Surface nanocrystallization of metallic materials-presentation of the concepts behind a new approach (1999) J. Mater. Sci. Technol., 15-3, pp. 193-197. , https://www.scopus.com/record/display.uri?eid=2-s2.0-0000506802&origin=recordpage; Sato, M., Tsuji, N., Minamino, Y., Koizumi, Y., Formation of nanocrystalline surface layers in various metallic materials by near surface severe plastic deformation (2004) Sci. Technol. Adv. Mater., 5, pp. 145-152; Abouelsayed, A., Ebrahim, M.R., El hotaby, W., Hassan, S.A., Al-Ashkar Terhertz, E., Acoustic phonon detection from a compact surface layer of spherical nanoparticles powder mixture of aluminum, alumina and multi-walled carbon nanotube (2017) Spectrochim. Acta A Mol. Biomol. Spectrosc., 185, pp. 179-187; Ebrahim, M.R., El Meleigy, A.E., Abd Elhamid, S.E., El Warraky, A.A., Improving corrosion resistance of Al through sever plastic deformation 1- under Free condition, Egypt (2016) J. Chem., 59-4, pp. 537-555; El Meleigy, A.E., Ebrahim, M.R., Abd El Hamid, S.E., El Warraky, A.A., Improving corrosion resistance of Al through sever plastic deformation 2- under Accelerated condition, Egypt (2016) J. Chem., 59-4, pp. 557-571; Vlassiouk, I., Krasnoslobodtsev, A., Smirnov, S., Germann, M., Direct detection and separation of DNA using nanoporous alumina filters (2004) Langmuir, 20-23, pp. 9913-9915; Santos, A., Kumeria, T., Losic, D., Nanoporous anodic aluminum oxide for chemical sensing and biosensors (2013) Trends Anal. Chem., 44, pp. 25-38; Ingham, C.J., ter Maat, J., M de Vos, W., Where bio meets nano: the many uses for nano-porous aluminum oxide in biotechnology (2012) Biotechnol. Adv., 30, pp. 1089-1099; Scully, J.R., Characterization of the corrosion of aluminum thim film using electrochemical impedance methods (1993) Electrochemical Impedance: Analysis and Interpretation, ASTM STP 1188, p. 276. , J.R. Scully D.D. Silverman M.W. Kendig; El-Taib Heakal, F., Shehata, O.S., Tantawy, N.S., Enhanced corrosion resistance of magnesium alloy AM60 by cerium (III) in chloride solution (2012) Corros. Sci., 56, pp. 86-95; Wernick, S., Pinner, R., Sheasby, P.G., (1987) The Surface Treatment and Finishing of Aluminum and its Alloys, 2. , fifth ed. ASM International Metals Park OH; Leibig, M., Halsey, T.C., The Double Layer Impedance as a probe of surface roughness (1993) Electrochim. Acta, 38-14, pp. 1985-1988; Moon, S.M., Pyun, S.I., The corrosion of pure aluminium during cathodic polarization in aqueous solutions (1997) Corros. Sci., 39-2, pp. 399-408; Alber Cotton, F., Wilkinson, G., Carlos, A., Murillo, Bochmann, M., Advanced Inorganic Chemistry (2007), sixth ed. Wiley India; Seli, H., Awang, M., Ismail, A.I.M., Rachman, E., Ahmad, Z.A., Evaluation of properties and FEM model of the friction welded mild steel-Al6061�alumina (2013) Mater. Res., 16-2, pp. 453-467; Aleksandrov, Y.A., Tsyganova, E.I., Pisarev, A.L., Reactions of aluminum with dilute aqueous NaOH solutions (2003) Russ. J. Gen. Chem., 73-5, pp. 689-694; Kuznetsova, A., Burleigh, T.D., Zhukov, V., Blachere, J., Yates, J.T., Jr., Electrochemical evaluation of a new type of corrosion passivation layer: artificially produced Al 2 O 3 films on aluminum (1998) Langmuir, 14-9, pp. 2502-2507; Moon, S.-M., Su-II pyun, the formation and dissolution of anodic oxide films on pure aluminum in alkaline solution (1999) Electrochem. Acta, 44, pp. 2445-2454 | |
dcterms.source | Scopus |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- avatar_scholar_256.png
- Size:
- 6.31 KB
- Format:
- Portable Network Graphics
- Description: