IL-10 and TGF-?: Roles in chondroprotective effects of Glucosamine in experimental Osteoarthritis?

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorWaly N.E.
dc.contributor.authorRefaiy A.
dc.contributor.authorAborehab N.M.
dc.contributor.otherDepartment of Physiology
dc.contributor.otherFaculty of Medicine
dc.contributor.otherHelwan University
dc.contributor.otherCairo
dc.contributor.other11795
dc.contributor.otherEgypt; Department of Pathology Faculty of Medicine
dc.contributor.otherAssiut University
dc.contributor.otherAssiut
dc.contributor.other71515
dc.contributor.otherEgypt; Department of Biochemistry
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherMSA University
dc.contributor.otherGiza
dc.contributor.other11787
dc.contributor.otherEgypt
dc.date.accessioned2020-01-09T20:41:22Z
dc.date.available2020-01-09T20:41:22Z
dc.date.issued2017
dc.descriptionScopus
dc.description.abstractObjective Osteoarthritis (OA) is a complex disease of the whole joint. Glucosamine (GlcN) treatment may have a chondroprotective effect on OA. We investigated the mechanism of action of glucosamine treatment through interleukin-10 (Il-10) and transforming growth factor ?-1 (TGF ?-1). Methods Thirty male albino rats were used. A single intraarticular (i.a.) injection of 2�mg of Monosodium Iodoacetate (MIA) was injected into the knee joint of anesthetized rats. GlcN (50 or 100�mg/kg/day, p.o. for 2 month) was administered orally. Serum levels of Il-10 and TGF-?1 were determined by ELISA. Histopathological changes in treated and control joints were examined using hematoxylin-eosin (H & E) staining. Results The mean serum level of IL-10 significantly decreased in the OA group compared to control group (P value�<�0.0001). On the other hand, mean serum level of IL-10 significantly increased in GlcN treated groups when compared to the OA group (P value�<�0.0001). Serum level of TGF ?-1 was significantly elevated in OA group compared to control group (P value�<�0.0001). On the other hand, the mean serum level of TGF ?-1 was significantly decreased in the GlcN treated groups when compared to the OA group (P value�<�0.0001). Histopathological evaluation of GlcN treated groups showed different grades of healing, according to Osteoarthritis Research Society International (OARSI) grading system. Conclusion Our results showed that IL-10 and TGF-?1 possibly mediate GlcN chondroprotective effects in OA. Both serum biomarkers can be useful in the follow-up of articular cartilage damage in clinical settings. � 2017 Elsevier B.V.en_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=24001&tip=sid&clean=0
dc.identifier.doihttps://doi.org/10.1016/j.pathophys.2017.02.005
dc.identifier.doiPubMed ID :
dc.identifier.issn9284680
dc.identifier.otherhttps://doi.org/10.1016/j.pathophys.2017.02.005
dc.identifier.otherPubMed ID :
dc.identifier.urihttps://t.ly/kN7n3
dc.language.isoEnglishen_US
dc.publisherElsevier B.V.en_US
dc.relation.ispartofseriesPathophysiology
dc.relation.ispartofseries24
dc.subjectGlucosamineen_US
dc.subjectIL-10�TGF-?en_US
dc.subjectOsteoarthritisen_US
dc.subjectbiological markeren_US
dc.subjectglucosamineen_US
dc.subjectinterleukin 10en_US
dc.subjecttransforming growth factor betaen_US
dc.subjectanimal experimenten_US
dc.subjectanimal modelen_US
dc.subjectArticleen_US
dc.subjectchondroprotectionen_US
dc.subjectcontrolled studyen_US
dc.subjectdrug mechanismen_US
dc.subjectenzyme linked immunosorbent assayen_US
dc.subjectexperimental osteoarthritisen_US
dc.subjecthealingen_US
dc.subjecthistopathologyen_US
dc.subjectmaleen_US
dc.subjectnonhumanen_US
dc.subjectprotein blood levelen_US
dc.subjectraten_US
dc.titleIL-10 and TGF-?: Roles in chondroprotective effects of Glucosamine in experimental Osteoarthritis?en_US
dc.typeArticleen_US
dcterms.isReferencedByZhang, W., Ouyang, H., Dass, C.R., Xu, J., Current research on pharmacologic and regenerative therapies for osteoarthritis (2016) Bone. Res., 4, p. 15040; Hootman, J.M., Helmick, C.G., Projections of US prevalence of arthritis and associated activity limitations (2006) Arthritis Rheum., 54 (1), pp. 226-229; Berenbaum, F., Osteoarthritis year 2010 in review: pharmacological therapies (2011) Osteoarthr. Cartil., 19 (4), pp. 361-365; Hawker, G.A., Mian, S., Bednis, K., Stanaitis, I., Osteoarthritis year 2010 in review: non-pharmacologic therapy (2011) Osteoarthr. Cartil., 19 (4), pp. 366-374; Aghazadeh-Habashi, A., Kohan, M.H., Asghar, W., Jamali, F., Glucosamine dose/concentration-effect correlation in the rat with adjuvant arthritis (2014) J. Pharm. Sci., 103 (2), pp. 760-767; Gibson, M., Li, H., Coburn, J., Moroni, L., Nahas, Z., Bingham, C., 3rd, et al: intra-articular delivery of glucosamine for treatment of experimental osteoarthritis created by a medial meniscectomy in a rat model (2014) J. Orthop. Res., 32 (2), pp. 302-309; Black, C., Clar, C., Henderson, R., MacEachern, C., McNamee, P., Quayyum, Z., The clinical effectiveness of glucosamine and chondroitin supplements in slowing or arresting progression of osteoarthritis of the knee: a systematic review and economic evaluation (2009) Health Technol. Assess., 13 (52), pp. 1-148; Bruyere, O., Reginster, J.Y., Glucosamine and chondroitin sulfate as therapeutic agents for knee and hip osteoarthritis (2007) Drugs Aging, 24 (7), pp. 573-580; Alekseeva, L.I., Sharapova, E.P., Kashevarova, N.G., Taskina, E.A., Anikin, S.G., Korotkova, T.A., [Use of ARTRA MSM FORTE in patients with knee osteoarthritis: results of a randomized open-label comparative study of the efficacy and tolerability of the drug] (2015) Ter. Arkh., 87 (12), pp. 49-54; Matsuno, H., Nakamura, H., Katayama, K., Hayashi, S., Kano, S., Yudoh, K., Effects of an oral administration of glucosamine-chondroitin-quercetin glucoside on the synovial fluid properties in patients with osteoarthritis and rheumatoid arthritis (2009) Biosci. Biotechnol. Biochem., 73 (2), pp. 288-292; Nakasone, Y., Watabe, K., Watanabe, K., Tomonaga, A., Nagaoka, I., Yamamoto, T., Effect of a glucosamine-based combination supplement containing chondroitin sulfate and antioxidant micronutrients in subjects with symptomatic knee osteoarthritis: a pilot study (2011) Exp. Ther. Med., 2 (5), pp. 893-899; Grover, A.K., Samson, S.E., Benefits of antioxidant supplements for knee osteoarthritis: rationale and reality (2016) Nutr. J., 15, p. 1; Henrotin, Y., Marty, M., Mobasheri, A., What is the current status of chondroitin sulfate and glucosamine for the treatment of knee osteoarthritis? (2014) Maturitas, 78 (3), pp. 184-187; Fenton, J.I., Chlebek-Brown, K.A., Peters, T.L., Caron, J.P., Orth, M.W., Glucosamine HCl reduces equine articular cartilage degradation in explant culture (2000) Osteoarthr. Cartil., 8 (4), pp. 258-265; Gouze, J.N., Bordji, K., Gulberti, S., Terlain, B., Netter, P., Magdalou, J., Interleukin-1beta down-regulates the expression of glucuronosyltransferase I, a key enzyme priming glycosaminoglycan biosynthesis: influence of glucosamine on interleukin-1beta-mediated effects in rat chondrocytes (2001) Arthritis Rheum., 44 (2), pp. 351-360; Naito, K., Matsui, Y., Maeda, K., Tanaka, K., Evaluation of the validity of the Autism Spectrum Quotient (AQ) in differentiating high-functioning autistic spectrum disorder from schizophrenia (2010) Kobe J. Med. Sci., 56 (3), pp. E116-24; Hulejova, H., Baresova, V., Klezl, Z., Polanska, M., Adam, M., Senolt, L., Increased level of cytokines and matrix metalloproteinases in osteoarthritic subchondral bone (2007) Cytokine, 38 (3), pp. 151-156; Jung, Y.K., Kim, G.W., Park, H.R., Lee, E.J., Choi, J.Y., Beier, F., Role of interleukin-10 in endochondral bone formation in mice: anabolic effect via the bone morphogenetic protein/Smad pathway (2013) Arthritis Rheum., 65 (12), pp. 3153-3164; van Meegeren, M.E., Roosendaal, G., Coeleveld, K., Nieuwenhuizen, L., Mastbergen, S.C., Lafeber, F.P., A single intra-articular injection with IL-4 plus IL-10 ameliorates blood-induced cartilage degeneration in haemophilic mice (2013) Br. J. Haematol., 160 (4), pp. 515-520; Gordon, K.J., Blobe, G.C., Role of transforming growth factor-beta superfamily signaling pathways in human disease (2008) Biochim. Biophys. Acta, 1782 (4), pp. 197-228; Janssens, K., ten Dijke, P., Janssens, S., Van Hul, W., Transforming growth factor-beta1 to the bone (2005) Endocr. Rev., 26 (6), pp. 743-774; Zhen, G., Wen, C., Jia, X., Li, Y., Crane, J.L., Mears, S.C., Inhibition of TGF-beta signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis (2013) Nat. Med., 19 (6), pp. 704-712; Tang, Y., Wu, X., Lei, W., Pang, L., Wan, C., Shi, Z., TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation (2009) Nat. Med., 15 (7), pp. 757-765; Nagase, H., Kumakura, S., Shimada, K., Establishment of a novel objective and quantitative method to assess pain-related behavior in monosodium iodoacetate-induced osteoarthritis in rat knee (2012) J. Pharmacol. Toxicol. Methods, 65 (1), pp. 29-36; Ishikawa, G., Nagakura, Y., Takeshita, N., Shimizu, Y., Efficacy of drugs with different mechanisms of action in relieving spontaneous pain at rest and during movement in a rat model of osteoarthritis (2014) Eur. J Pharmacol., 738, pp. 111-117; Al-Saffar, F.J.G.S., Fakurazi, S., Yaakub, H., Lip, M., Chondroprotective effect of Zerumbone on Monosodium Iodoacetate induced osteoarthritis in rats (2010) Journal of Applied Sciences, 10 (4), pp. 248-260; Vogler, G.A., Suckow, M.A., Weisbroth, S., Franklin, C.L., Anesthesia and Analgesia in the Laboratory Rat (2006), pp. 627-695. , Elsevier Academic Press New York, USA; Pritzker, K.P., Gay, S., Jimenez, S.A., Ostergaard, K., Pelletier, J.P., Revell, P.A., Osteoarthritis cartilage histopathology: grading and staging (2006) Osteoarthr. Cartil., 14 (1), pp. 13-29; Pavelka, K., Gatterova, J., Olejarova, M., Machacek, S., Giacovelli, G., Rovati, L.C., Glucosamine sulfate use and delay of progression of knee osteoarthritis: a 3-year, randomized, placebo-controlled, double-blind study (2002) Arch. Intern. Med., 162 (18), pp. 2113-2123; McAlindon, T.E., LaValley, M.P., Felson, D.T., Efficacy of glucosamine and chondroitin for treatment of osteoarthritis (2000) JAMA, 284 (10), p. 1241; Kanzaki, N., Ono, Y., Shibata, H., Moritani, T., Glucosamine-containing supplement improves locomotor functions in subjects with knee pain: a randomized, double-blind, placebo-controlled study (2015) Clin. Interv. Aging, 10, pp. 1743-1753; Terencio, M.C., Ferrandiz, M.L., Carceller, M.C., Ruhi, R., Dalmau, P., Verges, J., Chondroprotective effects of the combination chondroitin sulfate-glucosamine in a model of osteoarthritis induced by anterior cruciate ligament transection in ovariectomised rats (2016) Biomed. Pharmacother., 79, pp. 120-128; Rojas-Ortega, M., Cruz, R., Vega-Lopez, M.A., Cabrera-Gonzalez, M., Hernandez-Hernandez, J.M., Lavalle-Montalvo, C., Exercise modulates the expression of IL-1beta and IL-10 in the articular cartilage of normal and osteoarthritis-induced rats (2015) Pathol. Res. Pract., 211 (6), pp. 435-443; Muller, R.D., John, T., Kohl, B., Oberholzer, A., Gust, T., Hostmann, A., IL-10 overexpression differentially affects cartilage matrix gene expression in response to TNF-alpha in human articular chondrocytes in vitro (2008) Cytokine, 44 (3), pp. 377-385; Lacraz, S., Nicod, L.P., Chicheportiche, R., Welgus, H.G., Dayer, J.M., IL-10 inhibits metalloproteinase and stimulates TIMP-1 production in human mononuclear phagocytes (1995) J. Clin. Invest., 96 (5), pp. 2304-2310
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description:
Loading...
Thumbnail Image
Name:
GlcN-published.pdf
Size:
1.02 MB
Format:
Adobe Portable Document Format
Description: