Path and path deviation equations for p-branes

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorPavi, M.
dc.contributor.authorKahil M.E.
dc.contributor.otherJoef Stefen Institute
dc.contributor.otherLjubljana
dc.contributor.otherSlovenia; October University For Modern Sciences and Arts
dc.contributor.otherGiza
dc.contributor.otherEgypt; The American University in Cairo
dc.contributor.otherNew Cairo
dc.contributor.otherEgypt
dc.date.accessioned2020-01-25T19:58:28Z
dc.date.available2020-01-25T19:58:28Z
dc.date.issued2012
dc.descriptionScopus
dc.description.abstractPath and path deviation equations for neutral, charged, spinning and spinning charged test particles, using a modified Bazanski Lagrangian, are derived. We extend this approach to strings and branes. We show how the Bazanski Lagrangian for charged point particles and charged branes arises la Kaluza-Klein from the Bazanski Lagrangian in 5-dimensions. 2012 Versita Warsaw and Springer-Verlag Wien.en_US
dc.identifier.doihttps://doi.org/10.2478/s11534-011-0118-0
dc.identifier.doiPubMed ID :
dc.identifier.issn18951082
dc.identifier.otherhttps://doi.org/10.2478/s11534-011-0118-0
dc.identifier.otherPubMed ID :
dc.identifier.urihttps://t.ly/52rwY
dc.language.isoEnglishen_US
dc.relation.ispartofseriesCentral European Journal of Physics
dc.relation.ispartofseries10
dc.subjectBazanski actionen_US
dc.subjectGeodesic deviation equationen_US
dc.subjectKaluza-Klein theoriesen_US
dc.subjectstrings and branesen_US
dc.titlePath and path deviation equations for p-branesen_US
dc.typeArticleen_US
dcterms.isReferencedByDuff, M.J., arXiv: hep-th/0407175; Pav�i?, M., Tapia, V., arXiv: gr-qc/0010045; Roberts, M.D., (1999) Mod. Phys. Lett. A, 14, p. 1739; Roberts, M.D., (2010) Cent. Eur. J. Phys., 8, p. 915; Ellis, G.F.R., van Elst, H., arXiv: gr-qc/9709060; Wanas, M.I., Bakry, M.A., (2008) Proc., p. 2131. , MGXI, Part C; Roberts, M.D., (1996) Gen. Rel. Grav., 28, p. 1385; Bazanski, S.L., (1977) Ann. Inst. H. Poincar� A, 27, p. 145; Bazanski, S.L., (1989) J. Math. Phys., 30, p. 1018; Wanas, M.I., (1999) M.E. Kahil Gen. Rel. Grav., 31, p. 1921; Wanas, M.I., Kahil, M.E., (2005) Int. J. Geomet. Meth. Mod. Phys., 2, p. 1017; Kahil, M.E., Harko, H., (2009) Mod. Phys. Lett. A, 24, p. 667; Kahil, M.E., (2007) AIP Conf. Proc., 957, p. 392; Kahil, M.E., (2006) J. Math. Phys., 47, p. 052501; Nieto, J.A., Saucedo, J., Villanueva, V.M., (2003) Phys. Lett. A, 312, p. 175; Papapetrou, A., (1951) Proc. R. Soc. London A, 209, p. 248; Barut, A.O., Pavi?, M., (1993) Phys. Lett. B, 306, p. 49; Barut, A.O., Pavi?, M., (1994) Phys. Lett. B, 331, p. 45; Pavi?, M., (1988) Phys. Lett. B, 205, p. 231; Kerner, R., Martin, J., Mignemi, S., van Holten, J.W., (2000) Phys. Rev. D, 63, p. 027502; Pavi?, M., The Landscape of Theoretical Physics: A Global View; From Point Particles to the Brane World and Beyond (2001) Search of a Unifying Principle, , Dordrecht: Kluwer Academic; Pavi?, M., arXiv: 0912. 3669 [gr-qc]
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description: