Synergistic antibacterial effect of Glycyrrhiza glabra and Rosmarinus officinalis against MRSA isolated from Egypt

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorAssar N.H.
dc.contributor.authorHamouda H.M.
dc.contributor.authorMohamed G.S.
dc.contributor.authorAmin H.M.
dc.contributor.otherDepartment of Microbiology
dc.contributor.otherNational Organization for Drug Control and Research
dc.contributor.otherEgypt; Faculty of Pharmacy
dc.contributor.otherCairo University
dc.contributor.otherEgypt; Department of Microbiology
dc.contributor.otherM. S. A University
dc.contributor.otherEgypt; Department of Microbiology and Immunology
dc.contributor.otherKing Abdul-Aziz University
dc.contributor.otherSaudi Arabia
dc.date.accessioned2020-01-09T20:42:03Z
dc.date.available2020-01-09T20:42:03Z
dc.date.issued2015
dc.descriptionScopus
dc.descriptionMSA Google Scholar
dc.description.abstract192 Staphylococcus samples were isolated from patients in Egyptian hospitals and 112 were identified as Staphylococcus aureus using conventional methods based on morphological and biochemical characteristics. Sensitivity of isolates to a range of antibiotics was also tested by disc diffusion method, which revealed that 82% of isolates were MRSA isolates. Methicillin resistance was confirmed using PCR-based molecular approach, 8 isolates were harboured mecA gene and 4 isolates were Borderline S. aureus (BORSA). MICs of different antibiotic classes were determined; results were varied to different antibiotics, where Penicillin and Ampicillin MICs varied from resistant to borderline resistant isolates (512,62?g/ml). Cinnamomum cassia, Syzygium aromaticum, Glycyrrhiza glabra, Rosmarinus officinalis and Salvia officinalis plant extracts were tested to examine their antibacterial activity against MRSA isolates. MIC of tested plant extracts was evaluated by agar dilution method. Diethyl ether extracts of G. glabra, R. officinalis and S. officinalis showed the lowest MICs values (0.05, 0.39, 0.195mg/ml respectively). Investigation of possible synergistic effect upon combination between plant extracts with the lowest MICs values was evaluated by a checkerboard titration assay. Combination between diethyl ether extracts of G. glabra and R. officinalis at conc. 0.0125 and 0.0975 mg/ml respectively showed synergistic effect on MRSA isolates and standard strain. Both extracts shown antibacterial effects on MRSA cells by shrinkage of the protoplasts and disruption of the cytoplasmic membrane evidenced by protein analysis and Microscopic examination of cells pre and post treatment by TEM .These results suggest that these extracts might be used as a promising antibacterial agent.en_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=19700200724&tip=sid&clean=0
dc.identifier.citation[1] Beebe, F.A; Barkin, R.L; Barkin, S.A. Clinical and pharmacologic review of skeletal muscle relaxants for musculoskeletal conditions. Am. J. Ther., 2005, 12(2), 151-171. [2] British Pharmacopoeia; Her Majesty Stationery Office, London, 2011. [3] Martindale. The Complete Drug Reference, 35th ed.; Pharmaceutical Press, London, 2007. [4] Hollifield, R.D; Conklin, J.D. Determination of dantrolene in biological specimens containing drug-related metabolites. J. Pharma. Sci., 1973, 62(2), 271-274. [5] Saxena, S.J; Honigberg, I.L; Stewart, J.T; Keene, G.R; Vallner, J.J. Liquid chromatography in pharmaceutical analysis VI: Determination of dantrolene sodium in a dosage form. J. Pharma. Sci., 1977, 66(2), 286-288. [6] Saxena, S.J; Honigberg, I.L; Stewart, J.T; Vallner, J.J. Determination of dantrolene sodium in biological fluids. J. Pharma. Sci., 1977, 66(5), 751-753. [7] Hackett, L.P; Dusci, L.J. Determination of dantrolene sodium in human plasma using high-performance liquid chromatography. J. Chromatogr. A, 1979, 179(1), 222-224. [8] Katogi, Y.; Tamaki, N.; dachi, M.A; Terao, J.; Mitomi, M. Simultaneous determination of dantrolene and its metabolite, 5- hydroxydantrolene in human plasma by high-performance liquid chromatography. J. Chromatogr. B, 1982, 231, 404-408. [9] Wuis, E.W; Grutters, A.C; Vree, T.B; Kleyn, E.V.D. Simultaneous determination of dantrolene and its metabolites, 5- hydroxydantrolene and nitro-reduced acetylated dantrolene (F 490), in plasma and urine of man and dog by high-performance liquid chromatography. J. Chromatogr. B, 1982, 231(2), 401-409. [10] Lalande, M.; Mills, P.; Peterson, R.G. Determination of dantrolene and its reduced and oxidized metabolites in plasma by highperformance liquid chromatography. J. Chromatogr. B, 1988, 430(1), 187-191. [11] Wuis, E.W; Janssen, M.G; Vree, T.B; van der Kleijn, E. Determination of a dantrolene metabolite, 5-(p-nitrophenyl)-2-furoic acid, in plasma and urine by high-performance liquid chromatography. J. Chromatogr. B, 1990, 526(2), 575-580. [12] Cox, P.L; Heotis, J.P; Polin, D.; Rose, G.M. Quantitative determination of dantrolene sodium and its metabolites by differential pulse polarography. J. Pharma. Sci., 1969, 58(8), 987-989. [13] Ghoneim, E.M. Electroreduction of the muscle relaxant drug dantrolene sodium at the mercury electrode and its determination in bulk form and pharmaceutical formulation. Chem. Pharm. Bull., 2007, 55(10), 1483-1488. [14] Khan, S.R; Tawakkul, M.; Sayeed, V.A; Faustino, P.; Khan, M.A. Stability characterization, kinetics and mechanism of degradation of dantrolene in aqueous solution. Sci. Res., 2012, 3(3), 281-290. [15] Bouhsain, Z.; Garrigues, S.; Morales-Rubio, A.; Guardia, M. Flow injection spectrophotometric determination of paracetamol in pharmaceuticals by means of on-line microwave-assisted hydrolysis and reaction with 8-hydroxyquinoline (8-quinolinol). Anal. Chim. Acta, 1996, 330(1), 59-69. Qualitative and Quantitative Chemometry as Stability-Indicating Methods Current Pharmaceutical Analysis, 2018, Vol. 14, No. 1 67 [16] Rodenas, V.; Garcia, M.S; Sanchez-Pedreno, C.; Albero, M.I. Simultaneous determination of propacetamol and paracetamol by derivative spectrophotometry. Talanta, 2000, 52(3), 517-523. [17] Bloomfield, M.S. A sensitive and rapid assay for 4-aminophenol in paracetamol drug and tablet formulation by flow injection analysis with spectrophotometric detection. Talanta, 2002, 58(6), 1301- 1310. [18] Filik, H.; Hayvali, M.; Kilic, E. Sequential spectrophotometric determination of paracetamol and p-aminophenol with 2, 2-(1, 4- phenylenedivinylene) bis-8-hydroxyquinoline as a novel coupling reagent after microwave assisted hydrolysis. Anal. Chim. Acta, 2005, 535(1-2), 177-182. [19] Abdellatef, H.E; Ayad, M.M; Soliman, S.M; Youssef, N.F. Spectrophotometric and spectrodensitometric determination of paracetamol and drotaverineHCl in combination. Spectrochim. Acta A, 2007, 66(4-5), 1147-1151. [20] El-Yazbi, F.A; Hammu, H.H; Assi, S.A. Derivative-ratio spectrophotometric method for the determination of ternary mixture of aspirin, paracetamol and salicylic acid. Spectrochim. Acta A, 2007, 68(2), 275-278. [21] Khoshayand, M.R; Abdollahi, H.; Shariatpanahi, M.; Saadatfard, A.; Mohammadi, A. Simultaneous spectrophotometric determination of paracetamol, ibuprofen and caffeine in pharmaceuticals by chemometric methods. Spectrochim. Acta A, 2008, 70(3), 491-499. [22] Yehia, A.M; Mohamed, K. Abd El-Rahman. Application of normalized spectra in resolving a challenging Orphenadrine and Paracetamol binary mixture. Spectrochim. Acta A, 2015, 138, 21- 30. [23] Celma, C.; Allué, J.A.; Pruñonosa, J.; Peraire, C.; Obach, R. Simultaneous determination of paracetamol and chlorpheniramine in human plasma by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A, 2000, 870(1-2), 77-86. [24] Vignaduzzo, S.E; Kaufman, TS. Development and validation of a HPLC method for the simultaneous determination of bromhexine, chlorphenramine, paracetamol and pseudoephedrine in their combined cold medicine formulations. J. Liq. Chromatogr. R. T., 2013, 36(20), 2829-2843. [25] Lourenção, B.C; Medeiros, R.A; Rocha-Filho, R.C; Mazo L.H; Fatibello-Filho, O. Simultaneous voltammetric determination of paracetamol and caffeine in pharmaceutical formulations using a boron-doped diamond electrode. Talanta., 2009, 78(3), 748-752. [26] Atta, N.F, Galal, A.; Azab, S.M. Electrochemical determination of paracetamol using gold nanoparticles – application in tablets and human fluids. Int. J. Electrochem. Sci., 2011, 6, 5082-5096. [27] Rashed, N.S; Abdallah, O.M; Farag, R.S; Awad, S.S. Validated bivariate calibration spectrophotometric and high performance liquid chromatographic methods for simultaneous determination of dantrolene sodium and paracetamol in pharmaceutical dosage form. Adv. Anal. Chem., 2014, 4(1), 1-8. [28] El-Bagary, R.I; Elkady, E.F; Hegazi, M.A; Amin, N.E. Spectrophotometric methods for the simultaneous determination of paracetamol and dantrolene sodium in pharmaceutical dosage form. Eur. J. Chem., 2014, 5(1), 96-100. [29] Salem, H.; Mohamed, D. A comparative study of smart spectrophotometric methods for simultaneous determination of a skeletal muscle relaxant and an analgesic in combined dosage form. Spectrochim. Acta A, 2015, 140, 166-173. [30] Hadad, G.M; Emara, S.; Mahmoud, W.M. Development and validation of a stability-indicating RP-HPLC method for the determination of paracetamol with dantrolene or/and cetirizine and pseudoephedrine in two pharmaceutical dosage forms. Talanta, 2009, 79(5), 1360-1367. [31] El-Saharty, Y.S; Riad, S.M; Yehia, A.M; Sami, I. Stabilityindicating chromatographic methods for the determination of a skeletal muscle relaxant and an analgesic in their combined dosage form. J. Chromatogr. Sep. Tech., 2016, 7, 2. [32] Shehata, M.A; Ashour, A.; Hassan, N.Y; Fayed, A.S; El-Zeany, B.A. Liquid chromatography and chemometric methods for determination of rofecoxib in presence of its photo degradation and alkaline degradation products. Anal. Chim. Acta, 2004, 519(1), 23- 30. [33] Hoang, V.D.; Nhung, N.P.; Aboul-Enein, H.Y. Recent developments and applications of derivative spectrophotometry in pharmaceutical analysis. Curr. Pharm. Anal., 2013, 9(3), 261-277. [34] Hegazy, M.A.; Yehia, A.M.; Moustafa, A.A. Bivariate versus multivariate smart spectrophotometric calibration methods for the simultaneous determination of a quaternary mixture of mosapride, pantoprazole and their degradation products. Pharmazie, 2013, 68, 317-326. [35] Yehia, A.M.; Arafa, R.M.; Abbas, S.S.; Amer, S.M. Ratio manipulating spectrophotometry versus chemometry as stability indicating methods for cefquinome sulfate determination. Spectrochim. Acta A, 2016, 153, 231-240. [36] Yehia A.M.; Mohamed H.M.. Chemometrics resolution and quantification power evaluation: Application on pharmaceutical quaternary mixture of Paracetamol, Guaifenesin, Phenylephrine and p aminophenol. Spectrochim. Acta A, 2016, 152, 491-500. [37] El-Ragehy, N.; Yehia, A.M; Hassan, N.; Tantawy, M.; Abdelkawy, M. Chemometrics tools in detection and quantitation of the main impurities present in aspirin/dipyridamole extended-release capsules. J. AOAC Int., 2016, 99, 948-956. [38] Brereton, R.G. Multilevel multifactor designs for multivariate calibration. Analyst., 1997, 122(12), 1521-1529. [39] Rajalahti, T.; Kvalheim, O.M. Multivariate data analysis in pharmaceutics: A tutorial review. Int. J. Pharm., 2011, 417(1-2), 280- 290. [40] De Juan, A.; Tauler, R. Chemometrics applied to unravel multicomponent processes and mixtures: Revisiting latest trends in multivariate resolution. Anal. Chim. Acta, 2003, 500(1-2), 195-210. [41] Windig, W.; Guilment, J. Interactive self-modeling mixture analysis. Anal. Chem., 1991, 63(14), 1425-1432. [42] International Conference on Harmonization, Validation of Analytical Procedures: Methodology (Q2B); 1996.
dc.identifier.doihttps://doi.org/
dc.identifier.issn9755071
dc.identifier.otherhttps://doi.org/
dc.identifier.urihttps://t.ly/52wGP
dc.language.isoEnglishen_US
dc.publisherBentham Science Publishers B.V.
dc.publisherScholars Research Libraryen_US
dc.relation.ispartofseriesDer Pharmacia Lettre
dc.relation.ispartofseries7
dc.subjectOctober University for Modern Sciences and Arts
dc.subjectجامعة أكتوبر للعلوم الحديثة والآداب
dc.subjectUniversity of Modern Sciences and Arts
dc.subjectMSA University
dc.subjectAgar well diffusion methoden_US
dc.subjectGlycyrrhiza glabraen_US
dc.subjectMinimum inhibitory concentrationen_US
dc.subjectRosmarinus officinalisen_US
dc.subjectSynergistic effecten_US
dc.subjectamikacinen_US
dc.subjectampicillinen_US
dc.subjectantiinfective agenten_US
dc.subjectazithromycinen_US
dc.subjectcefalexinen_US
dc.subjectcefepimeen_US
dc.subjectcefotaximeen_US
dc.subjectcefuroximeen_US
dc.subjectchloramphenicolen_US
dc.subjectCinnamomum cassia extracten_US
dc.subjectciprofloxacinen_US
dc.subjectclove extracten_US
dc.subjectdoxycyclineen_US
dc.subjecterythromycinen_US
dc.subjectgentamicinen_US
dc.subjectGlycyrrhiza glabra extracten_US
dc.subjectimipenemen_US
dc.subjectlevofloxacinen_US
dc.subjectmeticillinen_US
dc.subjectnalidixic aciden_US
dc.subjectneomycinen_US
dc.subjectnorfloxacinen_US
dc.subjectoxacillinen_US
dc.subjectpenicillin derivativeen_US
dc.subjectplant extracten_US
dc.subjectRosmarinus officinalis extracten_US
dc.subjectSalvia officinalis extracten_US
dc.subjectsulfonamideen_US
dc.subjecttrimethoprimen_US
dc.subjectunclassified drugen_US
dc.subjectunindexed drugen_US
dc.subjectagar dilutionen_US
dc.subjectantibacterial activityen_US
dc.subjectantibiotic resistanceen_US
dc.subjectantibiotic sensitivityen_US
dc.subjectArticleen_US
dc.subjectbacterial geneen_US
dc.subjectbacterial membraneen_US
dc.subjectbacterial strainen_US
dc.subjectbacterium isolateen_US
dc.subjectcloveen_US
dc.subjectcontrolled studyen_US
dc.subjectdisk diffusionen_US
dc.subjectdrug potencyen_US
dc.subjectdrug potentiationen_US
dc.subjectEgypten_US
dc.subjectmecA geneen_US
dc.subjectmembrane damageen_US
dc.subjectmethicillin resistant Staphylococcus aureusen_US
dc.subjectminimum inhibitory concentrationen_US
dc.subjectmultidrug resistanceen_US
dc.subjectnonhumanen_US
dc.subjectprotoplasten_US
dc.titleSynergistic antibacterial effect of Glycyrrhiza glabra and Rosmarinus officinalis against MRSA isolated from Egypten_US
dc.typeArticleen_US
dcterms.isReferencedBySnitkin, E.S., (2012) Sci.Transl.Med, 4 (148); Allen, V.G., (2013) JAMA, 309 (2), pp. 163-170; Wassenberg, M.W., (2010) PLoS One, 5 (7); Jiamboonsri, P., (2011) Molecules, 16 (8), pp. 6255-6270; Nimje, P.D., (2013) Scholars Research Library, Der Pharmacia Lettre, 5 (1), pp. 53-59; Mehrotra, S., Srivastava, A.K., Nandi, S.P., (2010) Journal of Medicinal Plants Research, 4 (22), pp. 2393-2398; Olukoga, A., Donaldson, D., (1998) J R Soc Promot Health, 118 (5), pp. 300-304; Sedighinia, F., (2012) Avicenna Journal of Phytomedicine, 2 (3), pp. 118-124; Lo, A.H., (2002) Carcinogenesis, 23 (6), pp. 983-991; Tavassoli, S., Djomeh, Z.E., (2011) Global Veterinaria, 7 (4), pp. 337-341; Murray, P.R., (1995), American Society for Microbiology Press 6th ed; Bauer, A.W., (1966) Am.J.Clin.Pathol, 45 (4), pp. 493-496; (2000) EUCAST. Clin. Microbiol. Infect, 6 (9), pp. 509-515; Farhadian, A., (2014) British Microbiology Research Journal, 4 (4), pp. 454-461; Despande, A.R., Musaddiq, M., Bhandange, D.C., (2004) Journal of Microbial World, 6 (1), pp. 45-49; Perez, C., Pauli, M., Bazerque, P., (1990) Acta. Biologiae et Medecine Experimentaalis, 15 (11), pp. 115-123; Vidaillac, C., (2007) Antimicrob Agents Chemother, 51 (3), pp. 831-838; Thomson-Carter, F.M., Pennington, T.H., (1989) J Med Microbiol, 28 (1), pp. 25-32; Hafidh, R.R., (2011) Open Microbiol J, 5, pp. 96-106; Karthy, E.S., Ranjitha, P., Mohankumar, A., (2009) International Journal of Biology, 1 (1), pp. 34-40; Muller, A., (2003) Pathol Biol (Paris), 51 (8), pp. 454-459. , 9; Bassyouni, H., (2012) Afr.J.Microbiol.Res, 6 (49), pp. 7485-7493; Diekema, D.J., (2001) Clin.Infect.Dis, 32, pp. S114-S132; Panlilio, A.L., (1992) Infect Control Hosp Epidemiol, 13 (10), pp. 582-586; Durand, G., (2006) J Clin Microbiol, 44 (3), pp. 847-853; Voss, A., (1994) Eur J Clin Microbiol Infect Dis, 13 (1), pp. 50-55; Aygen, B., (2004) Clin Microbiol Infect, 10 (4), pp. 309-314; Borg, M.A., (2007) J Antimicrob Chemother, 60 (6), pp. 1310-1315; Esel, D., (2003) Clin.Microbiol.Infect, 9 (10), pp. 1038-1044; McDougal, L.K., Thornsberry, C., (1986) J Clin Microbiol, 23 (5), pp. 832-839; Monecke, S., (2011) PLoS One, 6 (4); Britto, J.S., (2001) J. Swamy Bot. Club, 18, pp. 81-82; Krishna, M.G., (1997) Phytochemistry, 46 (2), pp. 333-340; Singh, I., Singh, V., (2000) Phytomorphology, 50, pp. 151-157; Thongson, C., (2004) Lett.Appl.Microbiol, 39 (5), pp. 401-406; Shan, B., (2007) Int.J.Food Microbiol, 117 (1), pp. 112-119; Fan, M., Chen, J., (2001) Wei Sheng Wu Xue Bao, 41 (4), pp. 499-504; Yuste, J., Fung, D.Y., (2004) J Food Prot, 67 (2), pp. 371-377; San, P.S., Manickkam, J., Savarimuthu, I., (2006) Complementary and Alternative Medicine, 6 (11), p. 147; Pandey, A., Singh, P., (2011) Asian Journal of Plant Science and Research, 1 (2), pp. 69-80; Blumenthal, M., (1998) American Botanical Council, , Austin; Abdulmoneim, M.A., (2007) Research Journal of Biological Sciences, 2, pp. 417-423; Tayel, A.A., El-Tras, W.F., J Egypt Public Health Assoc, 200 (1-2), pp. 21-32. , 84.9; Nahed, M.A., Antibacterial activities of plant extracts combined with antibiotic drugs on clinical Escherichia coli isolated from urinary tract infection (2010) Proceeding Of Fifth Scientific Environmental Conference, , Zagazig Uni; Babu, A.J., (2011) Veterinary World, 4 (7), pp. 311-316; Tsukiyama, R., (2002) Antimicrob Agents Chemother, 46 (5), pp. 1226-1230; Nitalikar, M.M., (2010) International Journal of Pharm.Tech.Research, 2 (1), pp. 899-901; Mowrey, D., (1986) The scientific validation of herbal medicine, , Keats Publishing USA; He, J., (2006) J.Nat.Prod, 69 (1), pp. 121-124; Moreno, S., (2006) Free Radic Res, 40 (2), pp. 223-231; Gutierrez, J., Barry-Ryan, C., Bourke, P., (2008) Int.J.Food Microbiol, 124 (1), pp. 91-97; Horiuchi, K., (2007) Biol Pharm Bull, 30 (6), pp. 1147-1149; Muroi, H., (2004) Bioorg.Med.Chem, 12 (3), pp. 583-587; Vaara, M., Vaara, T., (1994) Antimicrob Agents Chemother, 38 (10), pp. 2498-2501; Fu, Y., (2009) Arch.Dermatol, 145 (1), pp. 86-88; Bradbury, S., Joy, D.C., Ford, B.J., (2011) Encyclopedia Britannica; de Billerbeck, V.G., (2001) Can J Microbiol, 47 (1), pp. 9-17; Ultee, A., Bennik, M.H., Moezelaar, R., (2002) Appl Environ Microbiol, 68 (4), pp. 1561-1568; Kalemba, D., Kunicka, A., (2003) Curr Med Chem, 10 (10), pp. 813-829
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description:
Loading...
Thumbnail Image
Name:
DPL-2015-7-1-40-49.pdf
Size:
5.32 MB
Format:
Adobe Portable Document Format
Description: