Synergistic antibacterial effect of Glycyrrhiza glabra and Rosmarinus officinalis against MRSA isolated from Egypt
Loading...
Date
2015
Authors
Journal Title
Journal ISSN
Volume Title
Type
Article
Publisher
Bentham Science Publishers B.V.
Scholars Research Library
Scholars Research Library
Series Info
Der Pharmacia Lettre
7
7
Doi
Scientific Journal Rankings
Abstract
192 Staphylococcus samples were isolated from patients in Egyptian hospitals and 112 were identified as Staphylococcus aureus using conventional methods based on morphological and biochemical characteristics. Sensitivity of isolates to a range of antibiotics was also tested by disc diffusion method, which revealed that 82% of isolates were MRSA isolates. Methicillin resistance was confirmed using PCR-based molecular approach, 8 isolates were harboured mecA gene and 4 isolates were Borderline S. aureus (BORSA). MICs of different antibiotic classes were determined; results were varied to different antibiotics, where Penicillin and Ampicillin MICs varied from resistant to borderline resistant isolates (512,62?g/ml). Cinnamomum cassia, Syzygium aromaticum, Glycyrrhiza glabra, Rosmarinus officinalis and Salvia officinalis plant extracts were tested to examine their antibacterial activity against MRSA isolates. MIC of tested plant extracts was evaluated by agar dilution method. Diethyl ether extracts of G. glabra, R. officinalis and S. officinalis showed the lowest MICs values (0.05, 0.39, 0.195mg/ml respectively). Investigation of possible synergistic effect upon combination between plant extracts with the lowest MICs values was evaluated by a checkerboard titration assay. Combination between diethyl ether extracts of G. glabra and R. officinalis at conc. 0.0125 and 0.0975 mg/ml respectively showed synergistic effect on MRSA isolates and standard strain. Both extracts shown antibacterial effects on MRSA cells by shrinkage of the protoplasts and disruption of the cytoplasmic membrane evidenced by protein analysis and Microscopic examination of cells pre and post treatment by TEM .These results suggest that these extracts might be used as a promising antibacterial agent.
Description
Scopus
MSA Google Scholar
MSA Google Scholar
Keywords
October University for Modern Sciences and Arts, جامعة أكتوبر للعلوم الحديثة والآداب, University of Modern Sciences and Arts, MSA University, Agar well diffusion method, Glycyrrhiza glabra, Minimum inhibitory concentration, Rosmarinus officinalis, Synergistic effect, amikacin, ampicillin, antiinfective agent, azithromycin, cefalexin, cefepime, cefotaxime, cefuroxime, chloramphenicol, Cinnamomum cassia extract, ciprofloxacin, clove extract, doxycycline, erythromycin, gentamicin, Glycyrrhiza glabra extract, imipenem, levofloxacin, meticillin, nalidixic acid, neomycin, norfloxacin, oxacillin, penicillin derivative, plant extract, Rosmarinus officinalis extract, Salvia officinalis extract, sulfonamide, trimethoprim, unclassified drug, unindexed drug, agar dilution, antibacterial activity, antibiotic resistance, antibiotic sensitivity, Article, bacterial gene, bacterial membrane, bacterial strain, bacterium isolate, clove, controlled study, disk diffusion, drug potency, drug potentiation, Egypt, mecA gene, membrane damage, methicillin resistant Staphylococcus aureus, minimum inhibitory concentration, multidrug resistance, nonhuman, protoplast
Citation
[1] Beebe, F.A; Barkin, R.L; Barkin, S.A. Clinical and pharmacologic
review of skeletal muscle relaxants for musculoskeletal conditions.
Am. J. Ther., 2005, 12(2), 151-171.
[2] British Pharmacopoeia; Her Majesty Stationery Office, London,
2011.
[3] Martindale. The Complete Drug Reference, 35th ed.; Pharmaceutical Press, London, 2007.
[4] Hollifield, R.D; Conklin, J.D. Determination of dantrolene in biological specimens containing drug-related metabolites. J. Pharma.
Sci., 1973, 62(2), 271-274.
[5] Saxena, S.J; Honigberg, I.L; Stewart, J.T; Keene, G.R; Vallner, J.J.
Liquid chromatography in pharmaceutical analysis VI: Determination of dantrolene sodium in a dosage form. J. Pharma. Sci., 1977,
66(2), 286-288.
[6] Saxena, S.J; Honigberg, I.L; Stewart, J.T; Vallner, J.J. Determination of dantrolene sodium in biological fluids. J. Pharma. Sci.,
1977, 66(5), 751-753.
[7] Hackett, L.P; Dusci, L.J. Determination of dantrolene sodium in
human plasma using high-performance liquid chromatography. J.
Chromatogr. A, 1979, 179(1), 222-224.
[8] Katogi, Y.; Tamaki, N.; dachi, M.A; Terao, J.; Mitomi, M. Simultaneous determination of dantrolene and its metabolite, 5-
hydroxydantrolene in human plasma by high-performance liquid
chromatography. J. Chromatogr. B, 1982, 231, 404-408.
[9] Wuis, E.W; Grutters, A.C; Vree, T.B; Kleyn, E.V.D. Simultaneous
determination of dantrolene and its metabolites, 5-
hydroxydantrolene and nitro-reduced acetylated dantrolene (F 490),
in plasma and urine of man and dog by high-performance liquid
chromatography. J. Chromatogr. B, 1982, 231(2), 401-409.
[10] Lalande, M.; Mills, P.; Peterson, R.G. Determination of dantrolene
and its reduced and oxidized metabolites in plasma by highperformance liquid chromatography. J. Chromatogr. B, 1988,
430(1), 187-191.
[11] Wuis, E.W; Janssen, M.G; Vree, T.B; van der Kleijn, E. Determination of a dantrolene metabolite, 5-(p-nitrophenyl)-2-furoic acid,
in plasma and urine by high-performance liquid chromatography. J.
Chromatogr. B, 1990, 526(2), 575-580.
[12] Cox, P.L; Heotis, J.P; Polin, D.; Rose, G.M. Quantitative determination of dantrolene sodium and its metabolites by differential
pulse polarography. J. Pharma. Sci., 1969, 58(8), 987-989.
[13] Ghoneim, E.M. Electroreduction of the muscle relaxant drug dantrolene sodium at the mercury electrode and its determination in
bulk form and pharmaceutical formulation. Chem. Pharm. Bull.,
2007, 55(10), 1483-1488.
[14] Khan, S.R; Tawakkul, M.; Sayeed, V.A; Faustino, P.; Khan, M.A.
Stability characterization, kinetics and mechanism of degradation
of dantrolene in aqueous solution. Sci. Res., 2012, 3(3), 281-290.
[15] Bouhsain, Z.; Garrigues, S.; Morales-Rubio, A.; Guardia, M. Flow
injection spectrophotometric determination of paracetamol in
pharmaceuticals by means of on-line microwave-assisted hydrolysis and reaction with 8-hydroxyquinoline (8-quinolinol). Anal.
Chim. Acta, 1996, 330(1), 59-69.
Qualitative and Quantitative Chemometry as Stability-Indicating Methods Current Pharmaceutical Analysis, 2018, Vol. 14, No. 1 67
[16] Rodenas, V.; Garcia, M.S; Sanchez-Pedreno, C.; Albero, M.I.
Simultaneous determination of propacetamol and paracetamol by
derivative spectrophotometry. Talanta, 2000, 52(3), 517-523.
[17] Bloomfield, M.S. A sensitive and rapid assay for 4-aminophenol in
paracetamol drug and tablet formulation by flow injection analysis
with spectrophotometric detection. Talanta, 2002, 58(6), 1301-
1310.
[18] Filik, H.; Hayvali, M.; Kilic, E. Sequential spectrophotometric
determination of paracetamol and p-aminophenol with 2, 2-(1, 4-
phenylenedivinylene) bis-8-hydroxyquinoline as a novel coupling
reagent after microwave assisted hydrolysis. Anal. Chim. Acta,
2005, 535(1-2), 177-182.
[19] Abdellatef, H.E; Ayad, M.M; Soliman, S.M; Youssef, N.F. Spectrophotometric and spectrodensitometric determination of
paracetamol and drotaverineHCl in combination. Spectrochim. Acta
A, 2007, 66(4-5), 1147-1151.
[20] El-Yazbi, F.A; Hammu, H.H; Assi, S.A. Derivative-ratio spectrophotometric method for the determination of ternary mixture of aspirin, paracetamol and salicylic acid. Spectrochim. Acta A, 2007,
68(2), 275-278.
[21] Khoshayand, M.R; Abdollahi, H.; Shariatpanahi, M.; Saadatfard,
A.; Mohammadi, A. Simultaneous spectrophotometric determination of paracetamol, ibuprofen and caffeine in pharmaceuticals by
chemometric methods. Spectrochim. Acta A, 2008, 70(3), 491-499.
[22] Yehia, A.M; Mohamed, K. Abd El-Rahman. Application of normalized spectra in resolving a challenging Orphenadrine and
Paracetamol binary mixture. Spectrochim. Acta A, 2015, 138, 21-
30.
[23] Celma, C.; Allué, J.A.; Pruñonosa, J.; Peraire, C.; Obach, R. Simultaneous determination of paracetamol and chlorpheniramine in human plasma by liquid chromatography-tandem mass spectrometry.
J. Chromatogr. A, 2000, 870(1-2), 77-86.
[24] Vignaduzzo, S.E; Kaufman, TS. Development and validation of a
HPLC method for the simultaneous determination of bromhexine,
chlorphenramine, paracetamol and pseudoephedrine in their combined cold medicine formulations. J. Liq. Chromatogr. R. T., 2013,
36(20), 2829-2843.
[25] Lourenção, B.C; Medeiros, R.A; Rocha-Filho, R.C; Mazo L.H;
Fatibello-Filho, O. Simultaneous voltammetric determination of
paracetamol and caffeine in pharmaceutical formulations using a
boron-doped diamond electrode. Talanta., 2009, 78(3), 748-752.
[26] Atta, N.F, Galal, A.; Azab, S.M. Electrochemical determination of
paracetamol using gold nanoparticles – application in tablets and
human fluids. Int. J. Electrochem. Sci., 2011, 6, 5082-5096.
[27] Rashed, N.S; Abdallah, O.M; Farag, R.S; Awad, S.S. Validated
bivariate calibration spectrophotometric and high performance liquid chromatographic methods for simultaneous determination of
dantrolene sodium and paracetamol in pharmaceutical dosage form.
Adv. Anal. Chem., 2014, 4(1), 1-8.
[28] El-Bagary, R.I; Elkady, E.F; Hegazi, M.A; Amin, N.E. Spectrophotometric methods for the simultaneous determination of paracetamol and dantrolene sodium in pharmaceutical dosage form. Eur. J.
Chem., 2014, 5(1), 96-100.
[29] Salem, H.; Mohamed, D. A comparative study of smart spectrophotometric methods for simultaneous determination of a skeletal muscle relaxant and an analgesic in combined dosage form. Spectrochim. Acta A, 2015, 140, 166-173.
[30] Hadad, G.M; Emara, S.; Mahmoud, W.M. Development and validation of a stability-indicating RP-HPLC method for the determination of paracetamol with dantrolene or/and cetirizine and pseudoephedrine in two pharmaceutical dosage forms. Talanta, 2009,
79(5), 1360-1367.
[31] El-Saharty, Y.S; Riad, S.M; Yehia, A.M; Sami, I. Stabilityindicating chromatographic methods for the determination of a
skeletal muscle relaxant and an analgesic in their combined dosage
form. J. Chromatogr. Sep. Tech., 2016, 7, 2.
[32] Shehata, M.A; Ashour, A.; Hassan, N.Y; Fayed, A.S; El-Zeany,
B.A. Liquid chromatography and chemometric methods for determination of rofecoxib in presence of its photo degradation and alkaline degradation products. Anal. Chim. Acta, 2004, 519(1), 23-
30.
[33] Hoang, V.D.; Nhung, N.P.; Aboul-Enein, H.Y. Recent developments and applications of derivative spectrophotometry in pharmaceutical analysis. Curr. Pharm. Anal., 2013, 9(3), 261-277.
[34] Hegazy, M.A.; Yehia, A.M.; Moustafa, A.A. Bivariate versus
multivariate smart spectrophotometric calibration methods for the
simultaneous determination of a quaternary mixture of mosapride,
pantoprazole and their degradation products. Pharmazie, 2013, 68,
317-326.
[35] Yehia, A.M.; Arafa, R.M.; Abbas, S.S.; Amer, S.M. Ratio
manipulating spectrophotometry versus chemometry as stability
indicating methods for cefquinome sulfate determination. Spectrochim. Acta A, 2016, 153, 231-240.
[36] Yehia A.M.; Mohamed H.M.. Chemometrics resolution and
quantification power evaluation: Application on pharmaceutical
quaternary mixture of Paracetamol, Guaifenesin, Phenylephrine
and p aminophenol. Spectrochim. Acta A, 2016, 152, 491-500.
[37] El-Ragehy, N.; Yehia, A.M; Hassan, N.; Tantawy, M.; Abdelkawy,
M. Chemometrics tools in detection and quantitation of the main
impurities present in aspirin/dipyridamole extended-release
capsules. J. AOAC Int., 2016, 99, 948-956.
[38] Brereton, R.G. Multilevel multifactor designs for multivariate
calibration. Analyst., 1997, 122(12), 1521-1529.
[39] Rajalahti, T.; Kvalheim, O.M. Multivariate data analysis in pharmaceutics: A tutorial review. Int. J. Pharm., 2011, 417(1-2), 280-
290.
[40] De Juan, A.; Tauler, R. Chemometrics applied to unravel multicomponent processes and mixtures: Revisiting latest trends in
multivariate resolution. Anal. Chim. Acta, 2003, 500(1-2), 195-210.
[41] Windig, W.; Guilment, J. Interactive self-modeling mixture analysis. Anal. Chem., 1991, 63(14), 1425-1432.
[42] International Conference on Harmonization, Validation of Analytical Procedures: Methodology (Q2B); 1996.