Preclinical models of breast cancer: Two-way shuttles for immune checkpoint inhibitors from and to patient bedside

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorAbdel-Aziz A.K.
dc.contributor.authorSaadeldin M.K.
dc.contributor.authorD'Amico P.
dc.contributor.authorOrecchioni S.
dc.contributor.authorBertolini F.
dc.contributor.authorCurigliano G.
dc.contributor.authorMinucci S.
dc.contributor.otherDepartment of Experimental Oncology
dc.contributor.otherIEO
dc.contributor.otherEuropean Institute of Oncology IRCCS
dc.contributor.otherMilan
dc.contributor.otherItaly; Department of Pharmacology and Toxicology
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherAin Shams University
dc.contributor.otherCairo
dc.contributor.otherEgypt; Faculty of Biotechnology
dc.contributor.otherOctober University for Modern Sciences and Arts
dc.contributor.other6th October City
dc.contributor.otherCairo
dc.contributor.otherEgypt; Division of Early Drug Development for Innovative Therapies
dc.contributor.otherIEO
dc.contributor.otherEuropean Institute of Oncology IRCCS
dc.contributor.otherMilan
dc.contributor.otherItaly; Laboratory of Hematology-Oncology
dc.contributor.otherIEO
dc.contributor.otherEuropean Institute of Oncology IRCCS
dc.contributor.otherMilan
dc.contributor.otherItaly; Department of Oncology and Hemato-Oncology
dc.contributor.otherUniversity of Milano
dc.contributor.otherMilan
dc.contributor.otherItaly; Department of Biosciences
dc.contributor.otherUniversity of Milan
dc.contributor.otherMilan
dc.contributor.otherItaly
dc.date.accessioned2020-01-09T20:40:31Z
dc.date.available2020-01-09T20:40:31Z
dc.date.issued2019
dc.descriptionScopus
dc.description.abstractThe Food and Drug Administration has lately approved atezolizumab, anti-programmed death ligand 1 (PD-L1), to be used together with nanoparticle albumin-bound (nab) paclitaxel in treating patients with triple negative breast cancer (BC) expressing PD-L1. Nonetheless, immune checkpoint inhibitors (ICIs) are still challenged by the resistance and immune-related adverse effects evident in a considerable subset of treated patients without conclusive comprehension of the underlying molecular basis, biomarkers and tolerable therapeutic regimens capable of unleashing the anti-tumour immune responses. Stepping back to preclinical models is thus inevitable to address these inquiries. Herein, we comprehensively review diverse preclinical models of BC exploited in investigating ICIs underscoring their pros and cons as well as the learnt and awaited lessons to allow full exploitation of ICIs in BC therapy. 2019 Elsevier Ltden_US
dc.identifier.doihttps://doi.org/10.1016/j.ejca.2019.08.013
dc.identifier.doiPubMedID31606656
dc.identifier.issn9598049
dc.identifier.otherhttps://doi.org/10.1016/j.ejca.2019.08.013
dc.identifier.otherPubMedID31606656
dc.identifier.urihttps://t.ly/0E76g
dc.language.isoEnglishen_US
dc.publisherElsevier Ltden_US
dc.relation.ispartofseriesEuropean Journal of Cancer
dc.relation.ispartofseries122
dc.subjectBreast canceren_US
dc.subjectCTLA-4en_US
dc.subjectImmune checkpoint inhibitoren_US
dc.subjectPD-1en_US
dc.subjectPD-L1en_US
dc.subjectPreclinical modelen_US
dc.subjectantineoplastic agenten_US
dc.subjectbiological markeren_US
dc.subjectimmune checkpoint inhibitoren_US
dc.subjectimmunological antineoplastic agenten_US
dc.subjectnicotinamide adenine dinucleotide adenosine diphosphate ribosyltransferase inhibitoren_US
dc.subjectunclassified drugen_US
dc.subjectadjuvant therapyen_US
dc.subjectbreast canceren_US
dc.subjectcancer adjuvant therapyen_US
dc.subjectcancer chemotherapyen_US
dc.subjectcancer immunotherapyen_US
dc.subjectcancer modelen_US
dc.subjectcancer resistanceen_US
dc.subjectcancer transplantationen_US
dc.subjectcombination drug therapyen_US
dc.subjectex vivo studyen_US
dc.subjectexperimental designen_US
dc.subjecthumanen_US
dc.subjectimmune responseen_US
dc.subjectin vivo studyen_US
dc.subjectmolecular biologyen_US
dc.subjectmouse modelen_US
dc.subjectmurine modelen_US
dc.subjectmutational loaden_US
dc.subjectneoadjuvant therapyen_US
dc.subjectnonhumanen_US
dc.subjectpractice guidelineen_US
dc.subjectpreclinical studyen_US
dc.subjectpriority journalen_US
dc.subjectReviewen_US
dc.subjecttransgenic animalen_US
dc.subjecttumor immunityen_US
dc.subjecttumor vascularizationen_US
dc.subjecttumor volumeen_US
dc.titlePreclinical models of breast cancer: Two-way shuttles for immune checkpoint inhibitors from and to patient bedsideen_US
dc.typeReviewen_US
dcterms.isReferencedByWorld Health Organization, Breast cancer (2019), https://www.who.int/cancer/prevention/diagnosis-screening/breast-cancer/en/, (Accessed 21 March 2019); Chu, Q.D., Holm, N., Byrnes, K., Li, B.D., Translational research in breast cancer (2008) Surg Oncol Clin N Am, 17, pp. 421-438; Lim, B., Hortobagyi, G.N., Current challenges of metastatic breast cancer (2016) Cancer Metastasis Rev, 35, pp. 495-514; Herschkowitz, J.I., Simin, K., Weigman, V.J., Mikaelian, I., Usary, J., Hu, Z., Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors (2007) Genome Biol; Prat, A., Perou, C.M., Deconstructing the molecular portraits of breast cancer (2011) Mol Oncol, 5, pp. 5-23; Kumar, P., Aggarwal, R., An overview of triple-negative breast cancer (2016) Arch Gynecol Obstet, 293, pp. 247-269; Fan, Y., Zhang, C., Jin, S., Gao, Z., Cao, J., Wang, A., Progress of immune checkpoint therapy in the clinic (Review) (2019) Oncol Rep, 41, pp. 3-14; Schmid, P., Adams, S., Rugo, H., Schneeweiss, A., Barrios, C., Iwata, H., Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer (2019) N Engl J Med, 379, pp. 2108-2121; Zhou, C., Hirsch, F.R., TIM-3, a promising target for cancer immunotherapy (2018) OncoTargets Ther, 11, pp. 7005-7009; Dua, I., Tan, A.R., Immunotherapy for triple-negative breast Cancer: a focus on immune checkpoint inhibitors (2017) AJHO, 13, pp. 20-27; Kleffel, S., Posch, C., Barthel, S.R., Sharpe, A.H., Kupper, T.S., Schatton, T., Melanoma cell-intrinsic PD-1 receptor functions promote tumor growth (2015) Cell, 162, pp. 1242-1256; Swoboda, A., Nanda, R., Immune checkpoint blockade for breast cancer (2018) Cancer Treat Res, 173, pp. 155-165; Topalian, S.L., Drake, C.G., Pardoll, D.M., Immune checkpoint blockade: a common denominator approach to cancer therapy (2015) Cancer Cell, 27, pp. 450-461; Li, Z., Qiu, Y., Lu, W., Jiang, Y., Wang, J., Immunotherapeutic interventions of triple negative breast cancer (2018) J Transl Med, 16, p. 1; Ali, H.R., Provenzano, E., Dawson, S., Blows, F.M., Liu, B., Shah, M., Association between CD8 + T-cell in fi ltration and breast cancer survival in 12 439 patients (2014) Ann Oncol, pp. 1536-1543; Nolan, E., Savas, P., Policheni, A.N., Darcy, P.K., Vaillant, F., Mintoff, C.P., Combined immune checkpoint blockade as a therapeutic strategy for BRCA1 -mutated breast cancer (2017) Sci Transl Med, 4922, pp. 1-13; Nanda, R., Chow, L.Q.M., Dees, E.C., Berger, R., Gupta, S., Geva, R., Pembrolizumab in patients with advanced triple-negative breast Cancer: Phase ib KEYNOTE-012 study (2019) J Clin Oncol, 34, pp. 2460-2467; Specht, E., Anne, S., Polk, D., Roslind, A., Balslev, E., Nielsen, D., PD-L1 expression in breast cancer: expression in subtypes and prognostic significance: a systematic review (2019) Breast Canc Res Treat, 174, pp. 571-584; Rong, K., Dan, L., Pang, M., Bin, Y., Qian, J., Ying, H., Circulating � CD8 + T-cell repertoires reveal the biological characteristics of tumors and clinical responses to chemotherapy in breast cancer patients (2018) Cancer Immunol Immunother, 67, pp. 1743-1752; Lu, L., Bai, Y., Wang, Z., Elevated T cell activation score is associated with improved survival of breast cancer (2017) Breast Canc Res Treat, 164, pp. 689-696; Wagner, J., Rapsomaniki, M.A., Rodr?, M., Weber, W.P., Bodenmiller, B., Anzeneder, T., A single-cell atlas of the tumor and immune ecosystem of human breast cancer (2019) Cell, 177, pp. 1-16; Szekely, B., Bossuyt, V., Li, X., Wali, V.B., Patwardhan, G.A., Frederick, C., Immunological differences between primary and metastatic breast cancer (2018) Ann Oncol, 29, pp. 2232-2239; Adams, S., Schmid, P., Rugo, H.S., Winer, E.P., Loirat, D., Awada, A., Pembrolizumab monotherapy for previously treated metastatic triple-negative breast cancer: cohort a of the Phase 2 KEYNOTE-086 study (2018) Ann Oncol; Belli, C., Zuin, M., Mazzarella, L., Trapani, D., D'Amico, P., Guerini-Rocco, E., Liver toxicity in the era of immune checkpoint inhibitors: a practical approach (2018) Crit Rev Oncol Hematol, 132, pp. 125-129; Gelao, L., Criscitiello, C., Esposito, A., Goldhirsch, A., Curigliano, G., Immune checkpoint blockade in cancer treatment: a double-edged sword cross-targeting the host as an innocent bystander(2014) Toxins, pp. 914-933; Dimasi, J.A., Grabowski, H.G., Hansen, R.W., Innovation in the pharmaceutical industry?: new estimates of R & D costs (2016) J Health Econ, 47, pp. 20-33; Courau, T., Bonnereau, J., Chicoteau, J., Bottois, H., Remark, R., Miranda, L.A., Cocultures of human colorectal tumor spheroids with immune cells reveal the therapeutic potential of MICA/B and NKG2A targeting for cancer treatment (2019) J Immunother Cancer, 7, pp. 1-14; Jenkins, R.W., Aref, A.R., Lizotte, P.H., Ivanova, E., Stinson, S., Zhou, C.W., Ex vivo profiling of PD-1 blockade using organotypic tumor spheroids (2017) Cancer Discov, 8, pp. 196-215; Muraro, M.G., Muenst, S., Mele, V., Quagliata, L., Iezzi, G., Tzankov, A., Ex-vivo assessment of drug response on breast cancer primary tissue with preserved microenvironments (2017) Onco Immunology, 6, pp. 1-12; Abdel-Aziz, A.K., Shouman, S., El-Demerdash, E., Elgendy, M., Abdel-Naim, A.B., Chloroquine synergizes sunitinib cytotoxicity via modulating autophagic, apoptotic and angiogenic machineries (2014) Chem Biol Interact, 217, pp. 28-40; Sanmamed, M.F., Chester, C., Melero, I., Kohrt, H., Defining the optimal murine models to investigate immune checkpoint blockers and their combination with other immunotherapies (2016) Ann Oncol, 27, pp. 1190-1198; Yang, Y., Yang, H.H., Hu, Y., Watson, P.H., Liu, H., Geiger, R., Immunocompetent mouse allograft models for development of therapies to target breast cancer metastasis (2017) Oncotarget, 8, pp. 30621-30643; Ouzounova, M., Lee, E., Piranlioglu, R., Andaloussi, A.E., Kolhe, R., Demirci, M.F., Monocytic and granulocytic myeloid derived suppressor cells differentially regulate spatiotemporal tumour plasticity during metastatic cascade (2017) Nat Commun, 8, pp. 1-13; Aslakson, C.J., Miller, F.R., Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary Tumor1 (1992) Cancer Res, 52, pp. 1399-1405; Paget, S., The distribution of secondary growths in cancer of the breast (1989) Cancer Metastat Rev, 8, pp. 98-101; Qin, Y., Vasilatos, S.N., Chen, L., Wu, H., Cao, Z., Fu, Y., Inhibition of histone lysine-specific demethylase 1 elicits breast tumor immunity and enhances antitumor efficacy of immune checkpoint blockade (2018) Oncogene; De Henau, O., Rausch, M., Winkler, D., Campesato, L.F., Liu, C., Cymerman, D.H., Overcoming resistance to checkpoint blockade therapy by targeting PI3K? in myeloid cells (2016) Nature, 539, pp. 443-447; Sagiv-Barfi, I., Kohrt, H.E.K., Czerwinski, D.K., Ng, P.P., Chang, B.Y., Levy, R., Therapeutic antitumor immunity by checkpoint blockade is enhanced by ibrutinib, an inhibitor of both BTK and ITK (2015) Proc Natl Acad Sci, 112, pp. E966-E972; Zheng, X., Fang, Z., Liu, X., Deng, S., Zhou, P., Wang, X., Increased vessel perfusion predicts the efficacy of immune checkpoint blockade (2018) J Clin Investig, 128, pp. 2104-2115; Brockwell, N.K., Owen, K.L., Zanker, D., Spurling, A., Rautela, J., Duivenvoorden, H.M., Neoadjuvant Interferons: critical for effective PD-1 based immunotherapy in TNBC (2017) Cancer Immunol Res, , canimm.0150.2017; Orecchioni, S., Talarico, G., Labanca, V., Calleri, A., Mancuso, P., Bertolini, F., Vinorelbine, cyclophosphamide and 5-FU effects on the circulating and intratumoural landscape of immune cells improve anti-PD-L1 ef fi cacy in preclinical models of breast cancer and lymphoma (2018) Br J Canc, 118, pp. 1329-1336; Jure-Kunkel, M., Masters, G., Girit, E., Dito, G., Lee, F., Hunt, J.T., Synergy between chemotherapeutic agents and CTLA-4 blockade in preclinical tumor models (2013) Cancer Immunol Immunother, 62, pp. 1533-1545; Gray, M.J., Gong, J., Hatch, M.M.S., Nguyen, V., Hughes, C.C.W., Hutchins, J.T., Phosphatidylserine-targeting antibodies augment the anti-tumorigenic activity of anti-PD-1 therapy by enhancing immune activation and downregulating pro-oncogenic factors induced by T-cell checkpoint inhibition in murine triple-negative breast cancers (2016) Breast Cancer Res, 18; Ma, Y.-F., Chen, C., Li, D., Liu, M., Lv, Z.-W., Ji, Y., Targeting of interleukin (IL)-17A inhibits PDL1 expression in tumor cells and induces anticancer immunity in an estrogen receptor-negative murine model of breast cancer (2017) Oncotarget, 8, pp. 7614-7624; Vartuli, R.L., Zhou, H., Zhang, L., Powers, R.K., Klarquist, J., Rudra, P., Eya3 promotes breast tumor-associated immune suppression via threonine phosphatase-mediated PD-L1 upregulation (2018) J Clin Investig, 128, pp. 2535-2550; Mishra, S., Tamta, A.K., Sarikhani, M., Desingu, P.A., Subcutaneous Ehrlich Ascites Carcinoma mice model for studying cancer-induced cardiomyopathy (2018) Sci Rep, pp. 1-11; Ambrus, J.L., Ambrus, C.M., Byron, J.W., Goldberg, M.E., Harrisson, J.W., Study of metastasis with the aid of labeled ascites tumor cells (1956) Ann N Y Acad Sci, 63, pp. 938-961; Kersten, K., de Visser, K.E., van Miltenburg, M.H., Jonkers, J., Genetically engineered mouse models in oncology research and cancer medicine (2017) EMBO Mol Med, 9, pp. 137-153; Drost, R.M., Jonkers, J., Preclinical mouse models for BRCA1 -associated breast cancer (2009) Br J Canc, 101, pp. 1651-1657; Sedic, M., Skibinski, A., Brown, N., Gallardo, M., Mulligan, P., Martinez, P., Haploinsufficiency for BRCA1 leads to cell-type-specific genomic instability and premature senescence (2015) Nat Commun, 6; Doornebal, C.W., Klarenbeek, S., Braumuller, T.M., Klijn, C.N., Ciampricotti, M., Hau, C.S., A preclinical mouse model of invasive lobular breast cancer metastasis (2013) Cancer Res, 73, pp. 353-363; Peranzoni, E., Lemoine, J., Vimeux, L., Feuillet, V., Barrin, S., Kantari-Mimoun, C., Macrophages impede CD8 T cells from reaching tumor cells and limit the efficacy of anti PD-1 treatment (2018) Proc Natl Acad Sci, 115, pp. E4041-E4050; Capasso, A., Lang, J., Pitts, T.M., Jordan, K.R., Lieu, C.H., Davis, S.L., Characterization of immune responses to anti-PD-1 mono and combination immunotherapy in hematopoietic humanized mice implanted with tumor xenografts (2019) J Immunother Cancer, 7, pp. 1-16; Shultz, L.D., Brehm, M.A., Garcia-martinez, J.V., Greiner, D.L., Humanized mice for immune system investigation?: progress, promise and challenges (2012) Nat Publ Gr, 12, pp. 786-798; Wang, M., Yao, L.C., Cheng, M., Cai, D., Martinek, J., Pan, C.X., Humanized mice in studying efficacy and mechanisms of PD-1-targeted cancer immunotherapy (2018) FASEB J, 32, pp. 1537-1549; K�hk�nen, T.E., Suominen, M.I., MI Halleen, J.M., Haapaniemi, T., Tanaka, A., Seiler, M., Bernoulli, J., Humanized mouse models of triple-negative and triple-positive breast cancer for preclinical validation of novel immuno-oncology therapies (2018) Eur J Cancer, 92, pp. S7-S8; Su, K., Yong, M., Her, Z., Chen, Q., Humanized mice as unique tools for human-specific studies (2018) Arch Immunol Ther Exp (Warsz), 66, pp. 245-266; Norelli, M., Camisa, B., Barbiera, G., Falcone, L., Purevdorj, A., Genua, M., Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells (2018) Nat Med, 24, pp. 739-748; Rosato, R.R., Dvila-Gonzlez, D., Choi, D.S., Qian, W., Chen, W., Kozielski, A.J., Evaluation of anti-PD-1-based therapy against triple-negative breast cancer patient-derived xenograft tumors engrafted in humanized mouse models (2018) Breast Cancer Res, 20, pp. 1-16; Wege, A.K., Ernst, W., Eckl, J., Frankenberger, B., Vollmann-Zwerenz, A., Mnnel, D.N., Humanized tumor mice-A new model to study and manipulate the immune response in advanced cancer therapy (2011) Int J Cancer, 129, pp. 2194-2206; Deng, R., Bumbaca, D., Pastuskovas, C.V., Boswell, C.A., West, D., Cowan, K.J., Preclinical pharmacokinetics, pharmacodynamics, tissue distribution, and tumor penetration of anti-PD-L1 monoclonal antibody, an immune checkpoint inhibitor (2016) MAbs, 8, pp. 593-603; Verdial, F.C., Etzioni, R., Duggan, C.A.B., Demographic changes in breast cancer incidence, stage at diagnosis and age associated with population-based mammographic screening (2017) J Surg Oncol, 115, pp. 517-522; Winters, S., Martin, C., Murphy, D.S.N., Breast cancer epidemiology, prevention, and screening (2017) Prog Mol Biol Transl Sci, 151, pp. 1-32; Ghosh, A., Sarkar, S., Banerjee, S., Behbod, F., Tawfik, O., Mcgregor, D., MIND model for triple-negative breast cancer in syngeneic mice for quick and sequential progression analysis of lung metastasis (2018) PLoS One, 2, pp. 1-23; Selby, M.J., Engelhardt, J.J., Quigley, M., Henning, K.A., Chen, T., Srinivasan, M., Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells (2013) Cancer Immunol Res, 1, pp. 32-43; Dahan, R., Sega, E., Selby, M., Alan, J., Ravetch, J.V., FcgRs modulate the anti-tumor activity of antibodies targeting the PD-1/PD-L1 Axis (2015) Cancer Cell, 28, pp. 285-295; Kretschmer, A., Schwanbeck, R., Valerius, T., Rsner, T., Antibody isotypes for tumor immunotherapy (2017) Transfus Med Hemotherapy, 44, pp. 320-326; Wang, Q., Gao, J., Wu, X., Pseudoprogression and hyperprogression after checkpoint blockade (2018) Int Immunopharmacol, 58, pp. 125-135; Jenkins, R.W., Barbie, D.A., Flaherty, K.T., Mechanisms of resistance to immune checkpoint inhibitors (2018) Nat Publ Gr, 118, pp. 9-16; Maure, E., Yshii, L.M., Gebauer, C.M., Brunner-weinzierl, M., Bauer, J., Liblau, R., CTLA4 blockade elicits paraneoplastic neurological disease in a mouse model (2016) Brain, pp. 2923-2934; Mall, C., Sckisel, G.D., Proia, D.A., Mirsoian, A., Steven, K., Pai, C.S., Repeated PD-1/PD-L1 monoclonal antibody administration induces fatal xenogeneic hypersensitivity reactions in a murine model of breast cancer (2016) Onco Immunology, 5, pp. 1-12; Ordikhani, F., Guleria, I., Abdi, R., Ordikhani, F., Uehara, M., Kasinath, V., Targeting antigen-presenting cells by anti � PD-1 nanoparticles augments antitumor immunity Find the latest version: targeting antigen-presenting cells by anti PD-1 nanoparticles augments antitumor immunity (2018) JCI Insight, 3, pp. 1-17; Pai, C.S., Kingsbury, G., Pai, C.S., Simons, D.M., Lu, X., Evans, M., Tumor-conditional anti-CTLA4 uncouples antitumor efficacy from immunotherapy-related toxicity (2019) J Clin Investig, 129, pp. 349-363; Kim, K., Skora, A.D., Li, Z., Liu, Q., Tam, A.J., Blosser, R.L., Eradication of metastatic mouse cancers resistant to immune checkpoint blockade by suppression of myeloid-derived cells (2014) Proc Natl Acad Sci, 111, pp. 11774-11779; Nolan, E., Savas, P., Policheni, A.N., Darcy, P.K., Mintoff, C.P., Dushyanthen, S., Combined immune checkpoint blockade as a therapeutic strategy for BRCA1-mutated breast cancer (2018) Sci Transl Med, 9; Fumet, J., Isambert, N., Hervieu, A., Zanetta, S., Guion, J., Hennequin, A., Phase Ib/II trial evaluating the safety, tolerability and immunological activity of of durvalumab (MEDI4736) (anti-PD-L1) plus tremelimumab (anti-CTLA-4) combined with FOLFOX in patients with metastatic colorectal cancer (2018) ESMO Open, 3, pp. 1-9; Voorwerk, L., Slagter, M., Horlings, H.M., Sikorska, K., Vijver, K.V.D., Maaker, M.D., Immune induction strategies in metastatic triple-negative breast cancer to enhance the sensitivity to PD-1 blockade: the TONIC trial (2019) Nat Med, 25; Yelamos, J., Farres, J., Llacuna, L., Ampurdanes, C., Martin-caballero, J., PARP-1 and PARP-2: new players in tumour development (2011) Am J Cancer Res, 1, pp. 328-346; Jiao, S., Xia, W., Yamaguchi, H., Wei, Y., Chen, M., Hsu, M., PARP inhibitor upregulates PD-L1 expression and enhances cancer-associated immunosuppression (2017) Clin Cancer Res, 23, pp. 3711-3720; Le, D.G.K., Olaparib tablets for the treatment of germ line BRCA-mutated metastatic breast cancer (2018) Expert Rev Clin Pharmacol, 11, pp. 833-839; Lai, X., Stiff, A., Duggan, M., Wesolowski, R., Carson, W.E., Friedman, A., Modeling combination therapy for breast cancer with BET and immune checkpoint inhibitors (2018) Proc Natl Acad Sci, 115, pp. 5534-5539; Sade-feldman, M., Yizhak, K., Bjorgaard, S.L., Sullivan, R.J., Sade-feldman, M., Yizhak, K., Defining T cell states associated with response to checkpoint immunotherapy in melanoma (2018) Cell, pp. 998-1013; Jerby-arnon, L., Shah, P., Cuoco, M.S., Rodman, C., Su, M., Melms, J.C., A cancer cell program promotes T cell exclusion and resistance to checkpoint blockade (2017) Cell, 175, pp. 984-997; Liu, J., Blake, S.J., Yong, M.C., Harjunp��, H., Ngiow, S.F., Takeda, K., Improved efficacy of neoadjuvant compared to adjuvant immunotherapy to eradicate metastatic disease (2016) Cancer Discov, 6 (12), pp. 1382-1399; Klevorn, L., Teague, R., Adapting cancer immunotherapy models for the real world (2016) Trends Immunol, 37 (6), pp. 354-363; Dutta, S., Sengupta, P., Men and mice: relating their ages (2016) Life Sci, 1 (152), pp. 244-248; Samstein, R.M., Lee, C.H., Shoushtari, A.N., Hellmann, M.D., Shen, R., Janjigian, Y.Y., Tumor mutational load predicts survival after immunotherapy across multiple cancer types (2019) Nat Genet, 51 (2), pp. 202-206
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
avatar_scholar_128.png
Size:
2.73 KB
Format:
Portable Network Graphics
Description: