Investigating miRNA-661 and ATG4-B mRNA expression as potential biomarkers for hepatocellular carcinoma
dc.Affiliation | October University for modern sciences and Arts (MSA) | |
dc.contributor.author | Ali M.A. | |
dc.contributor.author | Matboli M. | |
dc.contributor.author | El-Khazragy N. | |
dc.contributor.author | Saber O. | |
dc.contributor.author | El-Nakeep S. | |
dc.contributor.author | Abdelzaher H.M. | |
dc.contributor.author | Shafei A.E.-S. | |
dc.contributor.author | Mostafa R. | |
dc.contributor.other | Department of Biomedical Research | |
dc.contributor.other | Armed Forces College of Medicine (AFCM) | |
dc.contributor.other | Cairo | |
dc.contributor.other | 11774 | |
dc.contributor.other | Egypt; Department of Medical Biochemistry and Molecular Biology | |
dc.contributor.other | Ain Shams Faculty of Medicine Research Center (Masri)11778 | |
dc.contributor.other | Egypt; Department of Clinical Pathology | |
dc.contributor.other | Oncology Diagnostic Unit | |
dc.contributor.other | Faculty of Medicine | |
dc.contributor.other | Ain Shams University | |
dc.contributor.other | Cairo | |
dc.contributor.other | 11778 | |
dc.contributor.other | Egypt; Armed Forces College of Medicine (AFCM) | |
dc.contributor.other | Cairo | |
dc.contributor.other | 11774 | |
dc.contributor.other | Egypt; Hepatology and Gastroenterology Unit | |
dc.contributor.other | Internal Medicine Department | |
dc.contributor.other | Faculty of Medicine | |
dc.contributor.other | Ain Shams University | |
dc.contributor.other | Cairo | |
dc.contributor.other | 11778 | |
dc.contributor.other | Egypt; Faculty of Biotechnology | |
dc.contributor.other | October University for Modern Sciences and Arts | |
dc.contributor.other | Cairo | |
dc.contributor.other | 12585 | |
dc.contributor.other | Egypt | |
dc.date.accessioned | 2020-01-09T20:40:58Z | |
dc.date.available | 2020-01-09T20:40:58Z | |
dc.date.issued | 2018 | |
dc.description | Scopus | |
dc.description.abstract | Aim: We aimed to examine the statistical association between serum expression of miRNA 661 (miR-661) and ATG-4B mRNA and hepatocellular carcinoma (HCC) based on in silico data analysis followed by clinical validation. Patients & methods: Quantitative reverse-transcriptase real-time PCR was used to examine the expression of miR-661 and ATG-4B mRNA in the sera of HCC patients versus control. Results: The expression of miR-661 and ATG-4B mRNA was positive in 97.14 and 77.14%, respectively, in HCC patients. The survival analysis showed that ATG-4B mRNA was an independent prognostic factor. Conclusion: Our data are the first report of its kind regarding the considerable clinical significance of miR-661 and ATG-4B mRNA in HCC patients. � 2018 2018 Future Medicine Ltd. | en_US |
dc.identifier.doi | https://doi.org/10.2217/bmm-2017-0273 | |
dc.identifier.doi | PubMedID29441798 | |
dc.identifier.issn | 17520363 | |
dc.identifier.other | https://doi.org/10.2217/bmm-2017-0273 | |
dc.identifier.other | PubMedID29441798 | |
dc.identifier.uri | https://t.ly/q2rjD | |
dc.language.iso | English | en_US |
dc.publisher | Future Medicine Ltd. | en_US |
dc.relation.ispartofseries | Biomarkers in Medicine | |
dc.relation.ispartofseries | 12 | |
dc.subject | ATG-4B | en_US |
dc.subject | bioinformatics | en_US |
dc.subject | biomarkers | en_US |
dc.subject | hepatocellular carcinoma | en_US |
dc.subject | miR-661 | en_US |
dc.subject | prognosis | en_US |
dc.subject | alanine aminotransferase | en_US |
dc.subject | bilirubin | en_US |
dc.subject | cysteine proteinase | en_US |
dc.subject | messenger RNA | en_US |
dc.subject | microRNA | en_US |
dc.subject | microRNA 661 | en_US |
dc.subject | protein ATG 4 | en_US |
dc.subject | unclassified drug | en_US |
dc.subject | ATG4B protein, human | en_US |
dc.subject | autophagy related protein | en_US |
dc.subject | cysteine proteinase | en_US |
dc.subject | messenger RNA | en_US |
dc.subject | microRNA | en_US |
dc.subject | MIRN661 microRNA, human | en_US |
dc.subject | tumor marker | en_US |
dc.subject | adult | en_US |
dc.subject | alanine aminotransferase blood level | en_US |
dc.subject | area under the curve | en_US |
dc.subject | Article | en_US |
dc.subject | ATG4 B gene | en_US |
dc.subject | bilirubin blood level | en_US |
dc.subject | cancer prognosis | en_US |
dc.subject | cancer staging | en_US |
dc.subject | cancer survival | en_US |
dc.subject | Child Pugh score | en_US |
dc.subject | disease marker | en_US |
dc.subject | female | en_US |
dc.subject | gene | en_US |
dc.subject | gene expression | en_US |
dc.subject | human | en_US |
dc.subject | liver cell carcinoma | en_US |
dc.subject | liver cirrhosis | en_US |
dc.subject | major clinical study | en_US |
dc.subject | male | en_US |
dc.subject | protein blood level | en_US |
dc.subject | receiver operating characteristic | en_US |
dc.subject | reverse transcription polymerase chain reaction | en_US |
dc.subject | sensitivity and specificity | en_US |
dc.subject | survival rate | en_US |
dc.subject | blood | en_US |
dc.subject | case control study | en_US |
dc.subject | genetics | en_US |
dc.subject | liver cell carcinoma | en_US |
dc.subject | liver tumor | en_US |
dc.subject | metabolism | en_US |
dc.subject | middle aged | en_US |
dc.subject | pathology | en_US |
dc.subject | prognosis | en_US |
dc.subject | upregulation | en_US |
dc.subject | Area Under Curve | en_US |
dc.subject | Autophagy-Related Proteins | en_US |
dc.subject | Biomarkers, Tumor | en_US |
dc.subject | Carcinoma, Hepatocellular | en_US |
dc.subject | Case-Control Studies | en_US |
dc.subject | Cysteine Endopeptidases | en_US |
dc.subject | Female | en_US |
dc.subject | Humans | en_US |
dc.subject | Liver Neoplasms | en_US |
dc.subject | Male | en_US |
dc.subject | MicroRNAs | en_US |
dc.subject | Middle Aged | en_US |
dc.subject | Neoplasm Staging | en_US |
dc.subject | Prognosis | en_US |
dc.subject | RNA, Messenger | en_US |
dc.subject | ROC Curve | en_US |
dc.subject | Up-Regulation | en_US |
dc.title | Investigating miRNA-661 and ATG4-B mRNA expression as potential biomarkers for hepatocellular carcinoma | en_US |
dc.type | Article | en_US |
dcterms.isReferencedBy | (2015) NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines R) Hepatobiliary Cancers. Version 22015, , National Comprehensive Cancer Network R; El-Tawdi, A.H.F., Matboli, M., El-Nakeep, S., Azazy, A.E.M., Abdel-Rahman, O., Association of long noncoding RNA and c-JUN expression in hepatocellular carcinoma (2016) Expert Rev. Gastroenterol. Hepatol., 10 (7), pp. 869-877; Chava, S., Chandra, P.K., Aydin, Y., Balart, L.A., Wu, T., Autophagy in hepatocellular carcinomas: From pathophysiology to therapeutic response (2016) Hepatic Med. Evid. Res., 8, pp. 9-20; Song, Y.-J., Zhang, S.-S., Guo, X.-L., Autophagy contributes to the survival of CD133+ liver cancer stem cells in the hypoxic and nutrient-deprived tumor microenvironment (2013) Cancer Lett., 339 (1), pp. 70-81; Ding, Z.-B., Shi, Y.-H., Zhou, J., Association of autophagy defect with a malignant phenotype and poor prognosis of hepatocellular carcinoma (2008) Cancer Res., 68 (22), pp. 9167-9175; Sui, X., Chen, R., Wang, Z., Autophagy and chemotherapy resistance: A promising therapeutic target for cancer treatment (2013) Cell Death Dis., 4, p. e838; Lee, Y.J., Jang, B.K., The role of autophagy in hepatocellular carcinoma (2015) Int. J. Mol. Sci., 16 (11), pp. 26629-26643; Li, J., Ouyang, L., Liu, B., Cheng, Y., Unraveling the roles of ATG4 proteases from autophagy modulation to targeted cancer therapy (2016) Cancer Lett., 373 (1), pp. 19-26; Cabrera, S., Maciel, M., Herrera, I., Essential role for the ATG4B protease and autophagy in bleomycin-induced pulmonary fibrosis (2015) Autophagy, 11 (4), pp. 670-684; Liu, P.-F., Leung, C.-M., Chang, Y.-H., ATG4B promotes colorectal cancer growth independent of autophagic flux (2014) Autophagy, 10 (8), pp. 1454-1465; Wu, S., Su, J., Qian, H., Guo, T., SLC27A4 regulate ATG4B activity and control reactions to chemotherapeutics-induced autophagy in human lung cancer cells (2016) Tumour Biol. J. Int. Soc. Oncodevelopmental Biol. Med., 37 (5), pp. 6943-6952; Zhao, H., Yang, M., Zhao, J., Wang, J., Zhang, Y., Zhang, Q., High expression of LC3B is associated with progression and poor outcome in triple-negative breast cancer (2013) Med. Oncol. Northwood Lond. Engl., 30 (1), p. 475; Kunanopparat, A., Kimkong, I., Palaga, T., Tangkijvanich, P., Sirichindakul, B., Hirankarn, N., Increased ATG5-ATG12 in hepatitis B virus-associated hepatocellular carcinoma and their role in apoptosis (2016) World J. Gastroenterol., 22 (37), pp. 8361-8374; Toshima, T., Shirabe, K., Matsumoto, Y., Autophagy enhances hepatocellular carcinoma progression by activation of mitochondrial-oxidation (2014) J. Gastroenterol., 49 (5), pp. 907-916; Chen, X., Ba, Y., Ma, L., Characterization of microRNAs in serum: A novel class of biomarkers for diagnosis of cancer and other diseases (2008) Cell Res., 18 (10), pp. 997-1006; Jing, Z., Han, W., Sui, X., Xie, J., Pan, H., Interaction of autophagy with microRNAs and their potential therapeutic implications in human cancers (2015) Cancer Lett., 356 (2), pp. 332-338; Gougelet, A., Colnot, S., Hepatocellular carcinoma diagnosis: Circulating microRNAs emerge as robust biomarkers (2016) Clin. Res. Hepatol. Gastroenterol., 40 (4), pp. 367-369; Singh, R., Ramasubramanian, B., Kanji, S., Chakraborty, A.R., Haque, S.J., Chakravarti, A., Circulating microRNAs in cancer: Hope or hype (2016) Cancer Lett., 381 (1), pp. 113-121; Hoffman, Y., Bublik, D.R., Pilpel, Y., Oren, M., MiR-661 downregulates both Mdm2 and Mdm4 to activate p53 (2014) Cell Death Differ., 21 (2), pp. 302-309; Kim, J.K., Kim, T.S., Basu, J., Jo, E.-K., MicroRNA in innate immunity and autophagy during mycobacterial infection (2017) Cell. Microbiol., 19 (1); Vetter, G., Saumet, A., Moes, M., MiR-661 expression in SNAI1-induced epithelial to mesenchymal transition contributes to breast cancer cell invasion by targeting Nectin-1 and StarD10 messengers (2010) Oncogene, 29 (31), pp. 4436-4448; Bui-Nguyen, T.M., Pakala, S.B., Sirigiri, D.R., Martin, E., Murad, F., Kumar, R., Stimulation of inducible nitric oxide by hepatitis B virus transactivator protein HBx requires MTA1 coregulator (2010) J. Biol. Chem., 285 (10), pp. 6980-6986; Zhu, T., Yuan, J., Wang, Y., Gong, C., Xie, Y., Li, H., MiR-661 contributed to cell proliferation of human ovarian cancer cells by repressing INPP5J expression (2015) Biomed. Pharmacother. Biomedecine Pharmacother., 75, pp. 123-128; Llovet, J.M., Br�, C., Bruix, J., Prognosis of hepatocellular carcinoma: The BCLC staging classification (1999) Semin. Liver Dis., 19 (3), pp. 329-338; Child, C.G., Turcotte, J.G., Surgery and portal hypertension (1964) Major Probl. Clin. Surg., 1, pp. 1-85; Pugh, R.N., Murray-Lyon, I.M., Dawson, J.L., Pietroni, M.C., Williams, R., Transection of the oesophagus for bleeding oesophageal varices (1973) Br. J. Surg., 60 (8), pp. 646-649; GenAtlas, , http://genatlas.medecine.univ-paris5.fr/; The Human Protein Atlas, , www.proteinatlas.org/; Autophagy Regulatory Network, , http://arn.elte.hu/; MicroRNA. Org-targets and Expression, , www.microrna.org/microrna/home.do; Paraskevopoulou, M.D., Georgakilas, G., Kostoulas, N., DIANA-microT web server v5. 0: Service integration into miRNA functional analysis workflows (2013) Nucleic Acids Res., 41, pp. W169-W173; Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y., Morishima, K., KEGG: New perspectives on genomes, pathways, diseases and drugs (2017) Nucleic Acids Res., 45 (D1), pp. D353-D361; Fleige, S., Pfaffl, M.W., RNA integrity and the effect on the real-time qRT-PCR performance (2006) Mol. Aspects Med., 27 (2-3), pp. 126-139; Livak, K.J., Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method (2001) Methods San Diego Calif., 25 (4), pp. 402-408; Kwanten, W.J., Martinet, W., Michielsen, P.P., Francque, S.M., Role of autophagy in the pathophysiology of nonalcoholic fatty liver disease: A controversial issue (2014) World J. Gastroenterol., 20 (23), pp. 7325-7338; Li, Z., Liu, Y., Diao, H., Ma, J., Yao, Y., MiR-661 inhibits glioma cell proliferation, migration and invasion by targeting hTERT (2015) Biochem. Biophys. Res. Commun., 468 (4), pp. 870-876; Mizushima, N., Yoshimori, T., Levine, B., Methods in mammalian autophagy research (2010) Cell, 140 (3), pp. 313-326; Gupta, S., Bent, S., Kohlwes, J., Test characteristics of alpha-fetoprotein for detecting hepatocellular carcinoma in patients with hepatitis C. A systematic review and critical analysis (2003) Ann. Intern. Med., 139 (1), pp. 46-50; Valinezhad Orang, A., Safaralizadeh, R., Kazemzadeh-Bavili, M., Mechanisms of miRNA-Mediated gene regulation from common downregulation to mRNA-specific upregulation (2014) Int. J. Genomics, 2014, p. 970607; Xiao, M., Li, J., Li, W., MicroRNAs activate gene transcription epigenetically as an enhancer trigger (2016) RNA Biol., 14 (10), pp. 1326-1334; Li, L.-C., Okino, S.T., Zhao, H., Small dsRNAs induce transcriptional activation in human cells (2006) Proc. Natl Acad. Sci. USA, 103 (46), pp. 17337-17342; Place, R.F., Li, L.C., Pookot, D., Noonan, E.J., Dahiya, R., MicroRNA-373 induces expression of genes with complementary promoter sequences (2008) Proc. Natl Acad. Sci. USA, 105 (5), pp. 1608-1613 | |
dcterms.source | Scopus |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- avatar_scholar_128.png
- Size:
- 2.73 KB
- Format:
- Portable Network Graphics
- Description: