Radioiodinated doxorubicin as a new tumor imaging model: preparation, biological evaluation, docking and molecular dynamics
dc.Affiliation | October University for modern sciences and Arts (MSA) | |
dc.contributor.author | Ibrahim A.B. | |
dc.contributor.author | Alaraby Salem M. | |
dc.contributor.author | Fasih T.W. | |
dc.contributor.author | Brown A. | |
dc.contributor.author | Sakr T.M. | |
dc.contributor.other | Labeled Compounds Department | |
dc.contributor.other | Hot Labs Center | |
dc.contributor.other | Atomic Energy Authority | |
dc.contributor.other | Cairo | |
dc.contributor.other | 13759 | |
dc.contributor.other | Egypt; Pharmaceutical Chemistry Department | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | October University of Modern Sciences and Arts (MSA) | |
dc.contributor.other | Giza | |
dc.contributor.other | Egypt; Radioactive Isotopes and Generators Department | |
dc.contributor.other | Hot Laboratories Centre | |
dc.contributor.other | Atomic Energy Authority | |
dc.contributor.other | Cairo | |
dc.contributor.other | 13759 | |
dc.contributor.other | Egypt; Department of Chemistry | |
dc.contributor.other | University of Alberta | |
dc.contributor.other | Edmonton | |
dc.contributor.other | Canada | |
dc.date.accessioned | 2020-01-09T20:40:52Z | |
dc.date.available | 2020-01-09T20:40:52Z | |
dc.date.issued | 2018 | |
dc.description | Scopus | |
dc.description | MSA Google Scholar | |
dc.description.abstract | Abstract: Non-invasive molecular imaging techniques are accruing more interest in the last decades. Several radiolabelling elements have been FDA-approved and are currently used to characterize tumors. In this study, the DNA intercalating agent doxorubicin was radiolabelled with 125I. Several parameters for the radiolabelling reaction were investigated and optimized. A maximum yield of 94 � 0.3% was reached after reacting 20�?g of doxorubicin with 200�?g Chloramine-T at pH 5 for 30�min. The in vivo stability of 125I-doxorubicin is validated by the low propensity for thyroid uptake in mice. The preclinical T/NT ratio was approximately 6.4 at 30 min. Docking and molecular dynamics confirmed that the radiolabelling of doxorubicin did not affect (or slightly improved its binding to DNA). Overall, 125I-doxorubicin was demonstrated to be a promising non-invasive probe for solid tumor imaging. Graphical Abstract: [Figure not available: see fulltext.]. � 2018, Akad�miai Kiad�, Budapest, Hungary. | en_US |
dc.description.uri | https://www.scimagojr.com/journalsearch.php?q=24060&tip=sid&clean=0 | |
dc.identifier.doi | https://doi.org/10.1007/s10967-018-6013-z | |
dc.identifier.doi | PubMed ID : | |
dc.identifier.issn | 2365731 | |
dc.identifier.other | https://doi.org/10.1007/s10967-018-6013-z | |
dc.identifier.other | PubMed ID : | |
dc.identifier.uri | https://t.ly/6wyMB | |
dc.language.iso | English | en_US |
dc.publisher | Springer Netherlands | en_US |
dc.relation.ispartofseries | Journal of Radioanalytical and Nuclear Chemistry | |
dc.relation.ispartofseries | 317 | |
dc.subject | Doxorubicin | en_US |
dc.subject | Molecular docking | en_US |
dc.subject | Molecular dynamics | en_US |
dc.subject | Radioidination | en_US |
dc.subject | Tumor imaging | en_US |
dc.subject | doxorubicin | en_US |
dc.subject | doxorubicin i 125 | en_US |
dc.subject | iodine 125 | en_US |
dc.subject | tosylchloramide sodium | en_US |
dc.subject | tracer | en_US |
dc.subject | unclassified drug | en_US |
dc.subject | animal experiment | en_US |
dc.subject | animal model | en_US |
dc.subject | animal tissue | en_US |
dc.subject | Article | en_US |
dc.subject | DNA drug complex | en_US |
dc.subject | Ehrlich ascites tumor | en_US |
dc.subject | female | en_US |
dc.subject | isotope labeling | en_US |
dc.subject | molecular docking | en_US |
dc.subject | molecular dynamics | en_US |
dc.subject | molecular imaging | en_US |
dc.subject | mouse | en_US |
dc.subject | nonhuman | en_US |
dc.subject | organ distribution | en_US |
dc.subject | thyroid gland | en_US |
dc.title | Radioiodinated doxorubicin as a new tumor imaging model: preparation, biological evaluation, docking and molecular dynamics | en_US |
dc.type | Article | en_US |
dcterms.isReferencedBy | Weissleder, R., Molecular imaging in cancer (2006) Science, 312, pp. 1168-1171; Saha, G.B., (2012) Physics and radiobiology of nuclear medicine, , Springer, New York; Sakr, T.M., El-Safoury, D.M., Awad, G.A.S., Motaleb, M.A., Biodistribution of 99mTc-sunitinib as a potential radiotracer for tumor hypoxia imaging (2013) J Label Compd Radiopharm, 56, pp. 392-395; Etzioni, R., Urban, N., Ramsey, S., Early detection: the case for early detection (2003) Nat Rev Cancer, 3, p. 243; Marten, K., Bremer, C., Khazaie, K., Sameni, M., Sloane, B., Tung, C.H., Weissleder, R., Detection of dysplastic intestinal adenomas using enzyme-sensing molecular beacons in mice (2002) Gastroenterology, 122, pp. 406-414; Alencar, H., Mahmood, U., Kawano, Y., Hirata, T., Weissleder, R., Novel multiwavelength microscopic scanner for mouse imaging (2005) Neoplasia, 7, pp. 977-983; Evans, J.A., Nishioka, N.S., Endoscopic confocal microscopy (2005) Curr Opin Gastroenterol, 21, pp. 578-584; Harisinghani, M.G., Barentsz, J., Hahn, P.F., Deserno, W., Tabatabaei, S., van de Kaa, C.H., de la Rosette, J., Weissleder, R., Noninvasive detection of clinically occult lymph-node metastases in prostate cancer (2003) N Engl J Med, 348, pp. 2491-2499; Juweid, M.E., Cheson, B.D., Positron-emission tomography and assessment of cancer therapy (2006) N Engl J Med, 354, pp. 496-507; Altiparmak, B., Lambrecht, F.Y., Bayrak, E., Durkan, K., Design and synthesis of 99mTc-citro-folate for use as a tumor-targeted radiopharmaceutical (2010) Int J Pharm, 400, pp. 8-14; Santos-Cuevas, C.L., Ferro-Flores, G., de Murphy, C.A., Ram�rez, F.D.M., Luna- Guti�rrez, M.A., Pedraza-L�pez, M., Garc�a-Becerra, R., Ordaz-Rosado, D., Design, preparation, in vitro and in vivo evaluation of 99mTc-N2S2-Tat (49-57)-bombesin: a target-specific hybrid radiopharmaceutical (2009) Int J Pharm, 375, pp. 75-83; de Barros, A.L.B., das Gra�as Mota, L., de Aguiar Ferreira, C., de Oliveira, M.C., de G�es, A.M., Cardoso, V.N., Bombesin derivative radiolabeled with technetium-99m as agent for tumor identification (2010) Bioorg Med Chem Lett, 20, pp. 6182-6184; Sakr, T.M., Motaleb, M.A., Ibrahim, I.T., 99mTc-meropenem as a potential SPECT imaging probe for tumor hypoxia (2012) J Radioanal Nucl Chem, 291, pp. 705-710; Sakr, T.M., Essa, B.M., El-Essawy, F.A., El-Mohty, A.A., Synthesis and biodistribution of 99mTc-PyDA as a potential marker for tumor hypoxia imaging (2014) Radiochemistry, 56, pp. 76-80; Rasey, J.S., Koh, W.J., Evans, M.L., Peterson, L.M., Lewellen, T.K., Graham, M.M., Krohn, K.A., Quantifying regional hypoxia in human tumors with positron emission tomography of [18F] fluoromisonidazole: a pretherapy study of 37 patients (1996) Int J Radiat Oncol Biol Phys, 36, pp. 417-428; Rischin, D., Hicks, R.J., Fisher, R., Binns, D., Corry, J., Porceddu, S., Peters, L.J., Prognostic significance of [18F]-misonidazole positron emission tomography-detected tumor hypoxia in patients with advanced head and neck cancer randomly assigned to chemoradiation with or without tirapazamine: a substudy of Trans-Tasman Radiation Oncolo (2006) J Clin Oncol, 24, pp. 2098-2104; Parliament, M.B., Chapman, J.D., Urtasun, R.C., McEwan, A.J., Golberg, L., Mercer, J.R., Mannan, R.H., Wiebe, L.I., Non-invasive assessment of human tumour hypoxia with 123I-iodoazomycin arabinoside: preliminary report of a clinical study (1992) Br J Cancer, 65, p. 90; Stypinski, D., McQuarrie, S.A., McEwan, A.J.B., Wiebe, L.I., Pharmacokinetics and scintigraphic imaging of the hypoxia-imaging agent [123I] IAZA in healthy adults following exercise-based cardiac stress (2018) Pharmaceutics, 10, p. 25; Quon, A., Gambhir, S.S., FDG-PET and beyond: molecular breast cancer imaging (2005) J Clin Oncol, 23, pp. 1664-1673; Guller, U., Nitzsche, E.U., Schirp, U., Viehl, C.T., Torhorst, J., Moch, H., Langer, I., Zuber, M., Selective axillary surgery in breast cancer patients based on positron emission tomography with 18F-fluoro-2-deoxy-d-glucose: not yet! (2002) Breast Cancer Res Treat, 71, pp. 171-173; Larson, S.M., Cancer or inflammation? A holy grail for nuclear medicine (1994) J Nucl Med, 35, pp. 1653-1655; St�ber, B., Tanase, U., Herz, M., Differentiation of tumour and inflammation: characterisation of [methyl-3 H] methionine (MET) and O-(2-[18F] fluoroethyl)-l-tyrosine (FET) uptake in human tumour and inflammatory cells (2006) Eur J Nucl Med Mol Imaging, 33, pp. 932-939; Kubota, R., Yamada, S., Kubota, K., Ishiwata, K., Tamahashi, N., Intratumoral distribution of fluorine-18-fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by microautoradiography (1992) J Nucl Med, 33, pp. 1972-1980; Kubota, K., Kubota, R., Yamada, S., Tada, M., Effects of radiotherapy on the cellular uptake of carbon-14 labeledl-methionine in tumor tissue (1995) Nucl Med Biol, 22, pp. 193-198; Yamada, S., Kubota, K., Kubota, R., Ido, T., Tamahashi, N., High accumulation of fluorine-18-fluorodeoxyglucose in turpentine-induced inflammatory tissue (1995) J Nucl Med, 36, pp. 1301-1306; Kubota, R., Kubota, K., Yamada, S., Tada, M., Takahashi, T., Iwata, R., Methionine uptake by tumor tissue: a microautoradiographic comparison with FDG (1995) J Nucl Med, 36, pp. 484-492; Sugawara, Y., Gutowski, T.D., Fisher, S.J., Brown, R.S., Wahl, R.L., Uptake of positron emission tomography tracers in experimental bacterial infections: a comparative biodistribution study of radiolabeled FDG, thymidine, l-methionine, 67�Ga-citrate, and 125I-HSA (1999) Eur J Nucl Med, 26, pp. 333-341; Reinhardt, M.J., Kubota, K., Yamada, S., Iwata, R., Yaegashi, H., Assessment of cancer recurrence in residual tumors after fractionated radiotherapy: a comparison of fluorodeoxyglucose, l-methionine and thymidine (1997) J Nucl Med, 38, p. 280; Gutowski, T.D., Experimental studies of 18-F-2-fluoro-2-deoxy-d-glucose (FDG) in infection and in reactive lymph nodes (1992) J Nucl Med, 33, p. 925; Wahl, R.L., Fisher, S.J., A comparison of FDG, l-methionine and thymidine accumulation into experimental infections and reactive lymph-nodes (1993) J Nucl Med, 34, p. 104; Al-Wabli, R.I., Sakr, T.M., Khedr, M.A., Selim, A.A., El, M.A., Zaghary, W.A., Platelet-12 lipoxygenase targeting via a newly synthesized curcumin derivative radiolabeled with technetium-99�m (2016) Chem Cent J, 10, pp. 1-12; Wan, W.X., Yang, M., Pan, S.R., Yu, C.J., Wu, N.J., [99m Tc]polyamine analogs as potential tumor imaging agent (2008) Drug Dev Res, 69, pp. 520-525; Mallia, M.B., Subramanian, S., Mathur, A., Synthesis and evaluation of 2-, 4-, 5-substituted nitroimidazole-iminodiacetic acid-99mTc(CO)3 complexes to target hypoxic tumors (2010) J Label Compd Radiopharm, 53, pp. 535-542; Wang, J., Yang, J., Yan, Z., Duan, X., Tan, C., Shen, Y., Wu, W., Synthesis and preliminary biological evaluation of [99mTc(CO)3(IDA�PEG3�CB)]? for tumor imaging (2011) J Radioanal Nucl Chem, 287, pp. 465-469; Ding, R., He, Y., Xu, J., Liu, H., Wang, X., Feng, M., Qi, C., Peng, C., Preparation and bioevaluation of 99mTc nitrido radiopharmaceuticals with pyrazolo[1,5-a]pyrimidine as tumor imaging agents (2012) Med Chem Res, 21, pp. 523-530; Machac, J., Krynyckyi, B., Kim, C., Peptide and antibody imaging in lung cancer (2002) Semin Nucl Med, 32, pp. 276-292; Ibrahim, A.B., Sakr, T.M., Khoweysa, O.M., Motaleb, M.A., El-Bary, A.A., El-Kolaly, M.T., Formulation and preclinical evaluation of 99mTc-gemcitabine as a novel radiopharmaceutical for solid tumor imaging (2014) J Radioanal Nucl Chem, 302, pp. 179-186; Hsia, C.C., Huang, F.L., Hung, G.U., Shen, L.H., Chen, C.L., Wang, H.E., The biological characterization of 99mTc-BnAO-NI as a SPECT probe for imaging hypoxia in a sarcoma-bearing mouse model (2011) Appl Radiat Isot, 69, pp. 649-655; Kuchar, M., Oliveira, M.C., Gano, L., Santos, I., Kniess, T., Radioiodinated sunitinib as a potential radiotracer for imaging angiogenesis�radiosynthesis and first radiopharmacological evaluation of 5-[125I]Iodo-sunitinib (2012) Bioorg Med Chem Lett, 22, pp. 2850-2855; Baishya, R., Nayak, D.K., Chatterjee, N., Halder, K.K., Karmakar, S., Debnath, M.C., Synthesis, characterization, and biological evaluation of 99mTc(CO)3-labeled peptides for potential use as tumor targeted radiopharmaceuticals (2014) Chem Biol Drug Des, 83, pp. 58-70; Breeman, W.A., Hofland, L.J., Bakker, W.H., van der Pluij, M., Van Koetsveld, P.M., de Jong, M., Setyono-Han, B., Krenning, E.P., Radioiodinated somatostatin analogue RC-160: preparation, biological activity, in vivo application in rats and comparison with [123I-Tyr3]octreotide (1993) Eur J Nucl Med, 20, pp. 1089-1094; Maecke, H.R., Reubi, J.C., Somatostatin receptors as targets for nuclear medicine imaging and radionuclide treatment (2011) J Nucl Med, 52, pp. 841-844; Tacar, O., Sriamornsak, P., Dass, C.R., Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems (2013) J Pharm Pharmacol, 65, pp. 157-170; Fornari, F.A., Randolph, J.K., Yalowich, J.C., Ritke, M.K., Gewirtz, D.A., Interference by doxorubicin with DNA unwinding in MCF-7 breast tumor cells (1994) Mol Pharmacol, 45, pp. 649-656; Momparler, R.L., Karon, M., Siegel, S.E., Avila, F., Effect of adriamycin on DNA, RNA, and protein synthesis in cell-free systems and intact cells (1976) Cancer Res, 36, pp. 2891-2895; Pommier, Y., Leo, E., Zhang, H., Marchand, C., DNA topoisomerases and their poisoning by anticancer and antibacterial drugs (2010) Chem Biol, 17, pp. 421-433; Frederick, C.A., Williams, L.D., Ughetto, G., Van der Marel, G.A., Van Boom, J.H., Rich, A., Wang, A.H., Structural comparison of anticancer drug-DNA complexes: adriamycin and daunomycin (1990) Biochemistry, 29, pp. 2538-2549; Pigram, W.-J., Fuller, W., Hamilton, L.D., Stereochemistry of intercalation: interaction of daunomycin with DNA (1972) Nat New Biol, 235, p. 17; Carlson, M., Watson, A.L., Anderson, L., Largaespada, D.A., Provenzano, P.P., Multiphoton fluorescence lifetime imaging of chemotherapy distribution in solid tumors (2017) J Biomed Opt, 22, p. 116010; Zweit, J., Carnochan, P., Goodall, R., Ott, R., Nickel-57-doxorubicin, a potential radiotracer for pharmacokinetic studies using PET: production and radiolabelling (1994) J Nucl Biol Med Med (Turin, Italy 1991), 38, pp. 18-21; Rizvi, F.A., Bokhari, T.H., Roohi, S., Mushtaq, A., Direct labeling of doxorubicin with technetium-99m: its optimization, characterization and quality control (2012) J Radioanal Nucl Chem, 293, pp. 303-307; Fernandes, R.S., de Oliveira, S.J., Lopes, S.C.A., Chondrogiannis, S., Rubello, D., Cardoso, V.N., Oliveira, M.C., de Barros, A.L., Technetium-99m-labeled doxorubicin as an imaging probe for murine breast tumor (4T1 cell line) identification (2016) Nucl Med Commun, 37, pp. 307-312; Alonso, H., Bliznyuk, A.A., Gready, J.E., Combining docking and molecular dynamic simulations in drug design (2006) Med Res Rev, 26, pp. 531-568; Swidan, M.M., Sakr, T.M., Motaleb, M.A., Radioiodinated acebutolol as a new highly selective radiotracer for myocardial perfusion imaging (2014) J Label Compd Radiopharm, 57, pp. 593-599; Swidan, M.M., Sakr, T.M., Motaleb, M.A., El-Bary, A.A., El-Kolaly, M.T., Preliminary assessment of radioiodinated fenoterol and reproterol as potential scintigraphic agents for lung imaging (2015) J Radioanal Nucl Chem, 303, pp. 531-539; Sakr, T.M., Synthesis and preliminary affinity testing of 123I/125I-N-(3-iodophenyl)-2-methylpyrimidine-4,6-diamine as a novel potential lung scintigraphic agent (2014) Radiochemistry, 56, pp. 200-206; Ibrahim, A.B., Sakr, T.M., Khoweysa, O.M., Motaleb, M.A., El-Bary, A.A., El-Kolaly, M.T., Radioiodinated anastrozole and epirubicin as potential targeting radiopharmaceuticals for solid tumor imaging (2015) J Radioanal Nucl Chem, 303, pp. 967-975; Essa, B.M., Sakr, T.M., Khedr, M.A., El-Essawy, F.A., El-Mohty, A.A., 99mTc-amitrole as a novel selective imaging probe for solid tumor: in silico and preclinical pharmacological study (2015) Eur J Pharm Sci, 76, pp. 102-109; Sakr, T.M., Nawar, M.F., Fasih, T.W., El-Bayoumy, S., El-Rehim, H.A., Nano-technology contributions towards the development of high performance radioisotope generators: the future promise to meet the continuing clinical demand (2017) Appl Radiat Isot, 129, pp. 67-75; Mohamed, K.O., Nissan, Y.M., El-Malah, A.A., Ahmed, W.A., Ibrahim, D.M., Sakr, T.M., Motaleb, M.A., Design, synthesis and biological evaluation of some novel sulfonamide derivatives as apoptosis inducers (2017) Eur J Med Chem, 135, pp. 424-433; Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., Olson, A.J., AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility (2009) J Comput Chem, 30, pp. 2785-2791; Case, D.A., Darden, T.A., Cheatham, T.E., III, Simmerling, C.L., Wang, J., Duke, R.E., Luo, R., Roberts, B., (2012) AMBER 12, , University of California, San Francisco; Word, J.M., Lovell, S.C., Richardson, J.S., Richardson, D.C., Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation1 (1999) J Mol Biol, 285, pp. 1735-1747; Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M., Ferguson, D.M., Spellmeyer, D.C., Kollman, P.A., A second generation force field for the simulation of proteins, nucleic acids, and organic molecules (1995) J Am Chem Soc, 117, pp. 5179-5197; Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., Simmerling, C., Comparison of multiple Amber force fields and development of improved protein backbone parameters (2006) Proteins Struct Funct Bioinform, 65, pp. 712-725; Wang, J., Wang, W., Kollman, P.A., Case, D.A., Automatic atom type and bond type perception in molecular mechanical calculations (2006) J Mol Graph Model, 25, pp. 247-260; Alaraby Salem, M., Brown, A., Two-photon absorption of fluorescent protein chromophores incorporating non-canonical amino acids: TD-DFT screening and classical dynamics (2015) Phys Chem Chem Phys, 17, pp. 25563-25571; Roe, D.R., Cheatham, T.E., PTRAJ and {CPPTRAJ}: software for processing and analysis of molecular dynamics trajectory data (2013) J Chem Theory Comput, 9, pp. 3084-3095; Turner, P.J., XMGRACE, Version 5.1. 19 (2005) Center for Coastal and Land-Margin Research, Oregon Graduate Institute of Science and Technology, Beaverton, OR; Humphrey, W., Dalke, A., Schulten, K., VMD: visual molecular dynamics (1996) J Mol Graph, 14, pp. 33-38; Kollman, P.A., Massova, I., Reyes, C., Kuhn, B., Huo, S., Chong, L., Lee, M., Donini, O., Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models (2000) Acc Chem Res, 33, pp. 889-897 | |
dcterms.source | Scopus |