Radioiodinated doxorubicin as a new tumor imaging model: preparation, biological evaluation, docking and molecular dynamics

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorIbrahim A.B.
dc.contributor.authorAlaraby Salem M.
dc.contributor.authorFasih T.W.
dc.contributor.authorBrown A.
dc.contributor.authorSakr T.M.
dc.contributor.otherLabeled Compounds Department
dc.contributor.otherHot Labs Center
dc.contributor.otherAtomic Energy Authority
dc.contributor.otherCairo
dc.contributor.other13759
dc.contributor.otherEgypt; Pharmaceutical Chemistry Department
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherOctober University of Modern Sciences and Arts (MSA)
dc.contributor.otherGiza
dc.contributor.otherEgypt; Radioactive Isotopes and Generators Department
dc.contributor.otherHot Laboratories Centre
dc.contributor.otherAtomic Energy Authority
dc.contributor.otherCairo
dc.contributor.other13759
dc.contributor.otherEgypt; Department of Chemistry
dc.contributor.otherUniversity of Alberta
dc.contributor.otherEdmonton
dc.contributor.otherCanada
dc.date.accessioned2020-01-09T20:40:52Z
dc.date.available2020-01-09T20:40:52Z
dc.date.issued2018
dc.descriptionScopus
dc.descriptionMSA Google Scholar
dc.description.abstractAbstract: Non-invasive molecular imaging techniques are accruing more interest in the last decades. Several radiolabelling elements have been FDA-approved and are currently used to characterize tumors. In this study, the DNA intercalating agent doxorubicin was radiolabelled with 125I. Several parameters for the radiolabelling reaction were investigated and optimized. A maximum yield of 94 � 0.3% was reached after reacting 20�?g of doxorubicin with 200�?g Chloramine-T at pH 5 for 30�min. The in vivo stability of 125I-doxorubicin is validated by the low propensity for thyroid uptake in mice. The preclinical T/NT ratio was approximately 6.4 at 30 min. Docking and molecular dynamics confirmed that the radiolabelling of doxorubicin did not affect (or slightly improved its binding to DNA). Overall, 125I-doxorubicin was demonstrated to be a promising non-invasive probe for solid tumor imaging. Graphical Abstract: [Figure not available: see fulltext.]. � 2018, Akad�miai Kiad�, Budapest, Hungary.en_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=24060&tip=sid&clean=0
dc.identifier.doihttps://doi.org/10.1007/s10967-018-6013-z
dc.identifier.doiPubMed ID :
dc.identifier.issn2365731
dc.identifier.otherhttps://doi.org/10.1007/s10967-018-6013-z
dc.identifier.otherPubMed ID :
dc.identifier.urihttps://t.ly/6wyMB
dc.language.isoEnglishen_US
dc.publisherSpringer Netherlandsen_US
dc.relation.ispartofseriesJournal of Radioanalytical and Nuclear Chemistry
dc.relation.ispartofseries317
dc.subjectDoxorubicinen_US
dc.subjectMolecular dockingen_US
dc.subjectMolecular dynamicsen_US
dc.subjectRadioidinationen_US
dc.subjectTumor imagingen_US
dc.subjectdoxorubicinen_US
dc.subjectdoxorubicin i 125en_US
dc.subjectiodine 125en_US
dc.subjecttosylchloramide sodiumen_US
dc.subjecttraceren_US
dc.subjectunclassified drugen_US
dc.subjectanimal experimenten_US
dc.subjectanimal modelen_US
dc.subjectanimal tissueen_US
dc.subjectArticleen_US
dc.subjectDNA drug complexen_US
dc.subjectEhrlich ascites tumoren_US
dc.subjectfemaleen_US
dc.subjectisotope labelingen_US
dc.subjectmolecular dockingen_US
dc.subjectmolecular dynamicsen_US
dc.subjectmolecular imagingen_US
dc.subjectmouseen_US
dc.subjectnonhumanen_US
dc.subjectorgan distributionen_US
dc.subjectthyroid glanden_US
dc.titleRadioiodinated doxorubicin as a new tumor imaging model: preparation, biological evaluation, docking and molecular dynamicsen_US
dc.typeArticleen_US
dcterms.isReferencedByWeissleder, R., Molecular imaging in cancer (2006) Science, 312, pp. 1168-1171; Saha, G.B., (2012) Physics and radiobiology of nuclear medicine, , Springer, New York; Sakr, T.M., El-Safoury, D.M., Awad, G.A.S., Motaleb, M.A., Biodistribution of 99mTc-sunitinib as a potential radiotracer for tumor hypoxia imaging (2013) J Label Compd Radiopharm, 56, pp. 392-395; Etzioni, R., Urban, N., Ramsey, S., Early detection: the case for early detection (2003) Nat Rev Cancer, 3, p. 243; Marten, K., Bremer, C., Khazaie, K., Sameni, M., Sloane, B., Tung, C.H., Weissleder, R., Detection of dysplastic intestinal adenomas using enzyme-sensing molecular beacons in mice (2002) Gastroenterology, 122, pp. 406-414; Alencar, H., Mahmood, U., Kawano, Y., Hirata, T., Weissleder, R., Novel multiwavelength microscopic scanner for mouse imaging (2005) Neoplasia, 7, pp. 977-983; Evans, J.A., Nishioka, N.S., Endoscopic confocal microscopy (2005) Curr Opin Gastroenterol, 21, pp. 578-584; Harisinghani, M.G., Barentsz, J., Hahn, P.F., Deserno, W., Tabatabaei, S., van de Kaa, C.H., de la Rosette, J., Weissleder, R., Noninvasive detection of clinically occult lymph-node metastases in prostate cancer (2003) N Engl J Med, 348, pp. 2491-2499; Juweid, M.E., Cheson, B.D., Positron-emission tomography and assessment of cancer therapy (2006) N Engl J Med, 354, pp. 496-507; Altiparmak, B., Lambrecht, F.Y., Bayrak, E., Durkan, K., Design and synthesis of 99mTc-citro-folate for use as a tumor-targeted radiopharmaceutical (2010) Int J Pharm, 400, pp. 8-14; Santos-Cuevas, C.L., Ferro-Flores, G., de Murphy, C.A., Ram�rez, F.D.M., Luna- Guti�rrez, M.A., Pedraza-L�pez, M., Garc�a-Becerra, R., Ordaz-Rosado, D., Design, preparation, in vitro and in vivo evaluation of 99mTc-N2S2-Tat (49-57)-bombesin: a target-specific hybrid radiopharmaceutical (2009) Int J Pharm, 375, pp. 75-83; de Barros, A.L.B., das Gra�as Mota, L., de Aguiar Ferreira, C., de Oliveira, M.C., de G�es, A.M., Cardoso, V.N., Bombesin derivative radiolabeled with technetium-99m as agent for tumor identification (2010) Bioorg Med Chem Lett, 20, pp. 6182-6184; Sakr, T.M., Motaleb, M.A., Ibrahim, I.T., 99mTc-meropenem as a potential SPECT imaging probe for tumor hypoxia (2012) J Radioanal Nucl Chem, 291, pp. 705-710; Sakr, T.M., Essa, B.M., El-Essawy, F.A., El-Mohty, A.A., Synthesis and biodistribution of 99mTc-PyDA as a potential marker for tumor hypoxia imaging (2014) Radiochemistry, 56, pp. 76-80; Rasey, J.S., Koh, W.J., Evans, M.L., Peterson, L.M., Lewellen, T.K., Graham, M.M., Krohn, K.A., Quantifying regional hypoxia in human tumors with positron emission tomography of [18F] fluoromisonidazole: a pretherapy study of 37 patients (1996) Int J Radiat Oncol Biol Phys, 36, pp. 417-428; Rischin, D., Hicks, R.J., Fisher, R., Binns, D., Corry, J., Porceddu, S., Peters, L.J., Prognostic significance of [18F]-misonidazole positron emission tomography-detected tumor hypoxia in patients with advanced head and neck cancer randomly assigned to chemoradiation with or without tirapazamine: a substudy of Trans-Tasman Radiation Oncolo (2006) J Clin Oncol, 24, pp. 2098-2104; Parliament, M.B., Chapman, J.D., Urtasun, R.C., McEwan, A.J., Golberg, L., Mercer, J.R., Mannan, R.H., Wiebe, L.I., Non-invasive assessment of human tumour hypoxia with 123I-iodoazomycin arabinoside: preliminary report of a clinical study (1992) Br J Cancer, 65, p. 90; Stypinski, D., McQuarrie, S.A., McEwan, A.J.B., Wiebe, L.I., Pharmacokinetics and scintigraphic imaging of the hypoxia-imaging agent [123I] IAZA in healthy adults following exercise-based cardiac stress (2018) Pharmaceutics, 10, p. 25; Quon, A., Gambhir, S.S., FDG-PET and beyond: molecular breast cancer imaging (2005) J Clin Oncol, 23, pp. 1664-1673; Guller, U., Nitzsche, E.U., Schirp, U., Viehl, C.T., Torhorst, J., Moch, H., Langer, I., Zuber, M., Selective axillary surgery in breast cancer patients based on positron emission tomography with 18F-fluoro-2-deoxy-d-glucose: not yet! (2002) Breast Cancer Res Treat, 71, pp. 171-173; Larson, S.M., Cancer or inflammation? A holy grail for nuclear medicine (1994) J Nucl Med, 35, pp. 1653-1655; St�ber, B., Tanase, U., Herz, M., Differentiation of tumour and inflammation: characterisation of [methyl-3 H] methionine (MET) and O-(2-[18F] fluoroethyl)-l-tyrosine (FET) uptake in human tumour and inflammatory cells (2006) Eur J Nucl Med Mol Imaging, 33, pp. 932-939; Kubota, R., Yamada, S., Kubota, K., Ishiwata, K., Tamahashi, N., Intratumoral distribution of fluorine-18-fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by microautoradiography (1992) J Nucl Med, 33, pp. 1972-1980; Kubota, K., Kubota, R., Yamada, S., Tada, M., Effects of radiotherapy on the cellular uptake of carbon-14 labeledl-methionine in tumor tissue (1995) Nucl Med Biol, 22, pp. 193-198; Yamada, S., Kubota, K., Kubota, R., Ido, T., Tamahashi, N., High accumulation of fluorine-18-fluorodeoxyglucose in turpentine-induced inflammatory tissue (1995) J Nucl Med, 36, pp. 1301-1306; Kubota, R., Kubota, K., Yamada, S., Tada, M., Takahashi, T., Iwata, R., Methionine uptake by tumor tissue: a microautoradiographic comparison with FDG (1995) J Nucl Med, 36, pp. 484-492; Sugawara, Y., Gutowski, T.D., Fisher, S.J., Brown, R.S., Wahl, R.L., Uptake of positron emission tomography tracers in experimental bacterial infections: a comparative biodistribution study of radiolabeled FDG, thymidine, l-methionine, 67�Ga-citrate, and 125I-HSA (1999) Eur J Nucl Med, 26, pp. 333-341; Reinhardt, M.J., Kubota, K., Yamada, S., Iwata, R., Yaegashi, H., Assessment of cancer recurrence in residual tumors after fractionated radiotherapy: a comparison of fluorodeoxyglucose, l-methionine and thymidine (1997) J Nucl Med, 38, p. 280; Gutowski, T.D., Experimental studies of 18-F-2-fluoro-2-deoxy-d-glucose (FDG) in infection and in reactive lymph nodes (1992) J Nucl Med, 33, p. 925; Wahl, R.L., Fisher, S.J., A comparison of FDG, l-methionine and thymidine accumulation into experimental infections and reactive lymph-nodes (1993) J Nucl Med, 34, p. 104; Al-Wabli, R.I., Sakr, T.M., Khedr, M.A., Selim, A.A., El, M.A., Zaghary, W.A., Platelet-12 lipoxygenase targeting via a newly synthesized curcumin derivative radiolabeled with technetium-99�m (2016) Chem Cent J, 10, pp. 1-12; Wan, W.X., Yang, M., Pan, S.R., Yu, C.J., Wu, N.J., [99m Tc]polyamine analogs as potential tumor imaging agent (2008) Drug Dev Res, 69, pp. 520-525; Mallia, M.B., Subramanian, S., Mathur, A., Synthesis and evaluation of 2-, 4-, 5-substituted nitroimidazole-iminodiacetic acid-99mTc(CO)3 complexes to target hypoxic tumors (2010) J Label Compd Radiopharm, 53, pp. 535-542; Wang, J., Yang, J., Yan, Z., Duan, X., Tan, C., Shen, Y., Wu, W., Synthesis and preliminary biological evaluation of [99mTc(CO)3(IDA�PEG3�CB)]? for tumor imaging (2011) J Radioanal Nucl Chem, 287, pp. 465-469; Ding, R., He, Y., Xu, J., Liu, H., Wang, X., Feng, M., Qi, C., Peng, C., Preparation and bioevaluation of 99mTc nitrido radiopharmaceuticals with pyrazolo[1,5-a]pyrimidine as tumor imaging agents (2012) Med Chem Res, 21, pp. 523-530; Machac, J., Krynyckyi, B., Kim, C., Peptide and antibody imaging in lung cancer (2002) Semin Nucl Med, 32, pp. 276-292; Ibrahim, A.B., Sakr, T.M., Khoweysa, O.M., Motaleb, M.A., El-Bary, A.A., El-Kolaly, M.T., Formulation and preclinical evaluation of 99mTc-gemcitabine as a novel radiopharmaceutical for solid tumor imaging (2014) J Radioanal Nucl Chem, 302, pp. 179-186; Hsia, C.C., Huang, F.L., Hung, G.U., Shen, L.H., Chen, C.L., Wang, H.E., The biological characterization of 99mTc-BnAO-NI as a SPECT probe for imaging hypoxia in a sarcoma-bearing mouse model (2011) Appl Radiat Isot, 69, pp. 649-655; Kuchar, M., Oliveira, M.C., Gano, L., Santos, I., Kniess, T., Radioiodinated sunitinib as a potential radiotracer for imaging angiogenesis�radiosynthesis and first radiopharmacological evaluation of 5-[125I]Iodo-sunitinib (2012) Bioorg Med Chem Lett, 22, pp. 2850-2855; Baishya, R., Nayak, D.K., Chatterjee, N., Halder, K.K., Karmakar, S., Debnath, M.C., Synthesis, characterization, and biological evaluation of 99mTc(CO)3-labeled peptides for potential use as tumor targeted radiopharmaceuticals (2014) Chem Biol Drug Des, 83, pp. 58-70; Breeman, W.A., Hofland, L.J., Bakker, W.H., van der Pluij, M., Van Koetsveld, P.M., de Jong, M., Setyono-Han, B., Krenning, E.P., Radioiodinated somatostatin analogue RC-160: preparation, biological activity, in vivo application in rats and comparison with [123I-Tyr3]octreotide (1993) Eur J Nucl Med, 20, pp. 1089-1094; Maecke, H.R., Reubi, J.C., Somatostatin receptors as targets for nuclear medicine imaging and radionuclide treatment (2011) J Nucl Med, 52, pp. 841-844; Tacar, O., Sriamornsak, P., Dass, C.R., Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems (2013) J Pharm Pharmacol, 65, pp. 157-170; Fornari, F.A., Randolph, J.K., Yalowich, J.C., Ritke, M.K., Gewirtz, D.A., Interference by doxorubicin with DNA unwinding in MCF-7 breast tumor cells (1994) Mol Pharmacol, 45, pp. 649-656; Momparler, R.L., Karon, M., Siegel, S.E., Avila, F., Effect of adriamycin on DNA, RNA, and protein synthesis in cell-free systems and intact cells (1976) Cancer Res, 36, pp. 2891-2895; Pommier, Y., Leo, E., Zhang, H., Marchand, C., DNA topoisomerases and their poisoning by anticancer and antibacterial drugs (2010) Chem Biol, 17, pp. 421-433; Frederick, C.A., Williams, L.D., Ughetto, G., Van der Marel, G.A., Van Boom, J.H., Rich, A., Wang, A.H., Structural comparison of anticancer drug-DNA complexes: adriamycin and daunomycin (1990) Biochemistry, 29, pp. 2538-2549; Pigram, W.-J., Fuller, W., Hamilton, L.D., Stereochemistry of intercalation: interaction of daunomycin with DNA (1972) Nat New Biol, 235, p. 17; Carlson, M., Watson, A.L., Anderson, L., Largaespada, D.A., Provenzano, P.P., Multiphoton fluorescence lifetime imaging of chemotherapy distribution in solid tumors (2017) J Biomed Opt, 22, p. 116010; Zweit, J., Carnochan, P., Goodall, R., Ott, R., Nickel-57-doxorubicin, a potential radiotracer for pharmacokinetic studies using PET: production and radiolabelling (1994) J Nucl Biol Med Med (Turin, Italy 1991), 38, pp. 18-21; Rizvi, F.A., Bokhari, T.H., Roohi, S., Mushtaq, A., Direct labeling of doxorubicin with technetium-99m: its optimization, characterization and quality control (2012) J Radioanal Nucl Chem, 293, pp. 303-307; Fernandes, R.S., de Oliveira, S.J., Lopes, S.C.A., Chondrogiannis, S., Rubello, D., Cardoso, V.N., Oliveira, M.C., de Barros, A.L., Technetium-99m-labeled doxorubicin as an imaging probe for murine breast tumor (4T1 cell line) identification (2016) Nucl Med Commun, 37, pp. 307-312; Alonso, H., Bliznyuk, A.A., Gready, J.E., Combining docking and molecular dynamic simulations in drug design (2006) Med Res Rev, 26, pp. 531-568; Swidan, M.M., Sakr, T.M., Motaleb, M.A., Radioiodinated acebutolol as a new highly selective radiotracer for myocardial perfusion imaging (2014) J Label Compd Radiopharm, 57, pp. 593-599; Swidan, M.M., Sakr, T.M., Motaleb, M.A., El-Bary, A.A., El-Kolaly, M.T., Preliminary assessment of radioiodinated fenoterol and reproterol as potential scintigraphic agents for lung imaging (2015) J Radioanal Nucl Chem, 303, pp. 531-539; Sakr, T.M., Synthesis and preliminary affinity testing of 123I/125I-N-(3-iodophenyl)-2-methylpyrimidine-4,6-diamine as a novel potential lung scintigraphic agent (2014) Radiochemistry, 56, pp. 200-206; Ibrahim, A.B., Sakr, T.M., Khoweysa, O.M., Motaleb, M.A., El-Bary, A.A., El-Kolaly, M.T., Radioiodinated anastrozole and epirubicin as potential targeting radiopharmaceuticals for solid tumor imaging (2015) J Radioanal Nucl Chem, 303, pp. 967-975; Essa, B.M., Sakr, T.M., Khedr, M.A., El-Essawy, F.A., El-Mohty, A.A., 99mTc-amitrole as a novel selective imaging probe for solid tumor: in silico and preclinical pharmacological study (2015) Eur J Pharm Sci, 76, pp. 102-109; Sakr, T.M., Nawar, M.F., Fasih, T.W., El-Bayoumy, S., El-Rehim, H.A., Nano-technology contributions towards the development of high performance radioisotope generators: the future promise to meet the continuing clinical demand (2017) Appl Radiat Isot, 129, pp. 67-75; Mohamed, K.O., Nissan, Y.M., El-Malah, A.A., Ahmed, W.A., Ibrahim, D.M., Sakr, T.M., Motaleb, M.A., Design, synthesis and biological evaluation of some novel sulfonamide derivatives as apoptosis inducers (2017) Eur J Med Chem, 135, pp. 424-433; Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., Olson, A.J., AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility (2009) J Comput Chem, 30, pp. 2785-2791; Case, D.A., Darden, T.A., Cheatham, T.E., III, Simmerling, C.L., Wang, J., Duke, R.E., Luo, R., Roberts, B., (2012) AMBER 12, , University of California, San Francisco; Word, J.M., Lovell, S.C., Richardson, J.S., Richardson, D.C., Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation1 (1999) J Mol Biol, 285, pp. 1735-1747; Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M., Ferguson, D.M., Spellmeyer, D.C., Kollman, P.A., A second generation force field for the simulation of proteins, nucleic acids, and organic molecules (1995) J Am Chem Soc, 117, pp. 5179-5197; Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., Simmerling, C., Comparison of multiple Amber force fields and development of improved protein backbone parameters (2006) Proteins Struct Funct Bioinform, 65, pp. 712-725; Wang, J., Wang, W., Kollman, P.A., Case, D.A., Automatic atom type and bond type perception in molecular mechanical calculations (2006) J Mol Graph Model, 25, pp. 247-260; Alaraby Salem, M., Brown, A., Two-photon absorption of fluorescent protein chromophores incorporating non-canonical amino acids: TD-DFT screening and classical dynamics (2015) Phys Chem Chem Phys, 17, pp. 25563-25571; Roe, D.R., Cheatham, T.E., PTRAJ and {CPPTRAJ}: software for processing and analysis of molecular dynamics trajectory data (2013) J Chem Theory Comput, 9, pp. 3084-3095; Turner, P.J., XMGRACE, Version 5.1. 19 (2005) Center for Coastal and Land-Margin Research, Oregon Graduate Institute of Science and Technology, Beaverton, OR; Humphrey, W., Dalke, A., Schulten, K., VMD: visual molecular dynamics (1996) J Mol Graph, 14, pp. 33-38; Kollman, P.A., Massova, I., Reyes, C., Kuhn, B., Huo, S., Chong, L., Lee, M., Donini, O., Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models (2000) Acc Chem Res, 33, pp. 889-897
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description:
Loading...
Thumbnail Image
Name:
Ibrahim2018_Article_RadioiodinatedDoxorubicinAsANe.pdf
Size:
1.17 MB
Format:
Adobe Portable Document Format
Description: