Nano-technology contributions towards the development of high performance radioisotope generators: The future promise to meet the continuing clinical demand
dc.Affiliation | October University for modern sciences and Arts (MSA) | |
dc.contributor.author | Sakr T.M. | |
dc.contributor.author | Nawar M.F. | |
dc.contributor.author | Fasih T.W. | |
dc.contributor.author | El-Bayoumy S. | |
dc.contributor.author | Abd El-Rehim H.A. | |
dc.contributor.other | Radioactive Isotopes and Generators Dept. | |
dc.contributor.other | Hot Labs. Center | |
dc.contributor.other | Atomic Energy Authority | |
dc.contributor.other | Cairo | |
dc.contributor.other | 13759 | |
dc.contributor.other | Egypt; Pharmaceutical Chemistry Department | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | October University of Modern Sciences and Arts (MSA) | |
dc.contributor.other | Giza | |
dc.contributor.other | Egypt; National Center for Radiation Research and Technology | |
dc.contributor.other | Atomic Energy Authority | |
dc.contributor.other | Cairo | |
dc.contributor.other | Egypt | |
dc.date.accessioned | 2020-01-09T20:41:14Z | |
dc.date.available | 2020-01-09T20:41:14Z | |
dc.date.issued | 2017 | |
dc.description | Scopus | |
dc.description | MSA Google Scholar | |
dc.description.abstract | Nanostructured materials attracted considerable attention because of its high surface area to volume ratio resulting from their nano-scale dimensions. This class of sorbents is expected to have a potential impact on enhancement the efficacy of radioisotope generators for diagnostic and therapeutic applications in nuclear medicine. This review provides a summary on the importance of nanostructured materials as effective sorbents for the development of clinical-scale radioisotope generators and outlining the assessment of recent developments, key challenges and promising access to the near future. � 2017 Elsevier Ltd | en_US |
dc.description.uri | https://www.scimagojr.com/journalsearch.php?q=40907&tip=sid&clean=0 | |
dc.identifier.doi | https://doi.org/10.1016/j.apradiso.2017.08.012 | |
dc.identifier.doi | PubMed ID 28822270 | |
dc.identifier.issn | 9698043 | |
dc.identifier.other | https://doi.org/10.1016/j.apradiso.2017.08.012 | |
dc.identifier.other | PubMed ID 28822270 | |
dc.identifier.uri | https://t.ly/8pJY1 | |
dc.language.iso | English | en_US |
dc.publisher | Elsevier Ltd | en_US |
dc.relation.ispartofseries | Applied Radiation and Isotopes | |
dc.relation.ispartofseries | 129 | |
dc.subject | 188W/188Re generators | en_US |
dc.subject | 68Ge/68Ga generator | en_US |
dc.subject | 99Mo/99Tc generators | en_US |
dc.subject | Nano sorbents | en_US |
dc.subject | Nanotechnology | en_US |
dc.subject | Radioisotope generators | en_US |
dc.subject | Radiopharmaceuticals | en_US |
dc.subject | Diagnosis | en_US |
dc.subject | Inertial confinement fusion | en_US |
dc.subject | Nanostructured materials | en_US |
dc.subject | Nuclear medicine | en_US |
dc.subject | Radioisotopes | en_US |
dc.subject | High surface area | en_US |
dc.subject | Nano scale | en_US |
dc.subject | Potential impacts | en_US |
dc.subject | Radioisotope generators | en_US |
dc.subject | Radiopharmaceuticals | en_US |
dc.subject | Therapeutic Application | en_US |
dc.subject | Volume ratio | en_US |
dc.subject | ^68Ge/^68Ga generator | en_US |
dc.subject | Nanotechnology | en_US |
dc.subject | cesium 137 | en_US |
dc.subject | gallium 68 | en_US |
dc.subject | indium 113m | en_US |
dc.subject | molybdenum 99 | en_US |
dc.subject | nanomaterial | en_US |
dc.subject | radioisotope | en_US |
dc.subject | rhenium 188 | en_US |
dc.subject | sorbent | en_US |
dc.subject | technetium 99m | en_US |
dc.subject | uranium 235 | en_US |
dc.subject | chemical procedures | en_US |
dc.subject | column chromatography | en_US |
dc.subject | nanotechnology | en_US |
dc.subject | precipitation | en_US |
dc.subject | priority journal | en_US |
dc.subject | radioactivity | en_US |
dc.subject | Review | en_US |
dc.subject | solvent extraction | en_US |
dc.title | Nano-technology contributions towards the development of high performance radioisotope generators: The future promise to meet the continuing clinical demand | en_US |
dc.type | Review | en_US |
dcterms.isReferencedBy | Aardaneh, K., Walt, T.N., Ga2O for target, solvent extraction for radiochemical separation and SnO2 for the preparation of a 68Ge/68Ga generator (2006) J. Radioanal. Nucl. Chem., 268 (1), pp. 25-32; Abram, U., Alberto, R., Technetium and Rhenium- coordination chemistry and nuclear medical applications (2006) J. Braz. Chem. Soc., 17 (8), pp. 1486-1500; (2006), for Testing and Materials ASTM-E 2456-06: Standard terminology related to nanotechnology. West Conshohocken, PA, USA: ATSM; Asti, M., De Pietri, G., Fraternali, A., Grassi, E., Sghedoni, R., Fioroni, F., Validation of 68Ge/68Ga generator processing by chemical purification for routine clinical application of 68Ga-DOTATOC (2008) Nucl. Med. Biol., 35 (6), pp. 721-724; Baron, R., Campbell, F.W., Streeter, I., Xiano, L., Compton, R.G., Facile method for the construction of random nanoparticle arrays on a carbon support for the development of well-defined catalytic surfaces (2008) Int. J. Electochem. Sci., 3, pp. 556-565; Blower, P.J., Kettle, A.G., O'Doherty, M.J., Coakley, A.J., Knapp, F.F., 99mTc(V)DMSA quantitatively predicts 188Re(V)DMSA distribution in patients with prostate cancer metastatic to bone (2000) Eur. J. Nucl. Med., 9 (27), pp. 1405-1409; Boyd, R.E., Molybdenum-99: technetium-99m generator (1982) Radiochim. Acta, 30 (3), pp. 123-145; Boyd, R.E., IAEA � SR � 131, in Seminar on Radionuclide Generator Technology (1986), pp. 11-23. , International Atomic Energy Agency Vienna; Boyd, R.E., Technetium generators: status and prospects (1987) Radiochim. Acta, 41, pp. 59-63. , https://doi.org/10.1524/ract.1987.41.23.59; Breeman, W.A.P., Verbruggen, A.M., The 68Ge/68Ga generator has high potential, but when can we use 68Ga-labelled tracers in clinical routine (2007) Eur. J. Nucl. Med. Mol. Imaging, 34 (7), pp. 978-981; Callahan, A.P., Rice, D.E., McPherson, D.W., Mirzadeh, S., Knapp, F.F., The use of Alumina �SepPaks� as a simple method for the removal and determination of Tungsten-188 breakthrough from Tungsten-188/Rhenium-188 generators (1992) Int. J. Appl. Radiat. Isot., 43 (6), pp. 801-804. , https://doi.org/10.1016/0883-2889)(92)(90245-A; Castronovo, F.P., Jr., Wagner, H.N., Jr., IAEA-PL-392/7, Radiopharmaceuticals from Generator-Produced Radionuclides (1971), International Atomic Energy Agency Vienna; Chakraborty, S., Chakravarty, R., Sarma, H.D., Dash, A., Pillai, M.R.A., The Practicality of nanoceria-PAN-based 68Ge/68Ga generator toward preparation of 68Ga-labeled cyclic RGD dimer as a potential PET radiotracer for tumor imaging (2013) Cancer Biother. Radiopharm., 28 (1), pp. 77-83; Chakravarty, R., Dash, A., Development of Radionuclide Generators for Biomedical Applications (2013), Lambert Academic Publishing Saarbrucken; Chakravarty, R., Shukla, R., Gandhi, S., Ram, R., Dash, A., Venkatesh, M., Tyagi, A.K., Polymer embedded nanocrystalline Titania sorbent for 99Mo-99mTc generator (2008) J. Nanosci. Nanotechnol., 8 (9), pp. 4447-4452. , https://doi.org/10.1166/jnn.2008.280; Chakravarty, R., Dash, A., Venkatesh, M., Separation of clinical grade 188Re from 188W using polymer embedded nanocrystalline Titania (2009) Chromatographia, 69 (11), pp. 1363-1372; Chakravarty, R., Shukla, R., Ram, R., Tyagi, A.K., Dash, A., Venkatesh, M., Practicality of tetragonal nano-Zirconia as a prospective sorbent in the preparation of 99Mo/99mTc generator for biomedical applications (2010) Chromatographia, 72 (9), pp. 875-884; Chakravarty, R., Shukla, R., Ram, R., Tyagi, A.K., Dash, A., Venkatesh, M., Nanocrystalline zirconia: a novel sorbent for the preparation of 188W/188Re generator (2010) Int. J. Appl. Radiat. Isot., 68 (2), pp. 229-238; Chakravarty, R., Shukla, R., Ram, R., Venkatesh, M., Dash, A., Tyagi, A.K., Nanoceria-PAN composite-based advanced sorbent material: a major step forward in the field of clinical-grade 68Ge/68Ga generator (2010) ACS Appl. Mater. Interfaces, 2 (7), pp. 2069-2075; Chakravarty, R., Dash, A., Pillai, M.R.A., Venkatesh, M., Post-elution concentration of 188Re by an electrochemical method (2010) Int. J. Appl. Radiat. Isot., 68 (12), pp. 2302-2305; Chakravarty, R., Shuklab, R., Rama, R., Tyagib, A.K., Dash, A., Venkatesh, M., Development of a nano-zirconia based 68Ge/68Ga generator for biomedical applications (2011) Nucl. Med. Biol., 38 (4), pp. 575-583; Chakravarty, R., Shukla, R., Ram, R., Venkatesh, M., Tyagi, A.K., Dash, A., Exploitation of nano alumina for the chromatographic separation of clinical grade 188Re from 188W: a renaissance of the 188W/188Re generator technology (2011) Anal. Chem., 83 (16), pp. 6342-6348; Chakravarty, R., Ram, R., Dash, A., Pillai, M.R.A., Preparation of clinical-scale 99Mo/99mTc column generator using neutron activated low specific activity 99Mo and nanocrystalline ?-Al2O3 as column matrix (2012) Nucl. Med. Biol., 39 (7), pp. 916-922; Chakravarty, R., Ram, R., Mishra, R., Sen, D., Mazumder, S., Pillai, M.R.A., Dash, A., Mesoporous Alumina (MA) based double column approach for development of a clinical scale 99Mo/99mTc generator using (n, ?) 99Mo: an enticing application of nanomaterial (2013) Ind. Eng. Chem. Res., 52 (33), pp. 11673-11684; Chattopadhyay, S., Das, M.K., Sarkar, B.R., Ramamoorthy, N., Separation of pertechnetate from molybdate by anion-exchange chromatography: recovery of 99mTc from (n,?) 99Mo and suitability for use in central radiopharmacy (CRPh) (2002) Radiochim. Acta, 90 (7), pp. 417-442. , https://doi.org/10.1524/ract.2002.90.7_2002.417; Chattopadhyay, S., Das, S.S., Barua, L., A simple and rapid technique for recovery of 99mTc from low specific activity (n,?)99Mo based on solvent extraction and column chromatography (2010) Int. J. Appl. Radiat. Isot., 68 (1), pp. 1-4; Chen, Y., Xiong, Q.F., Yang, X.Q., He, L., Huang, Z.W., Evaluation of 188Re-DTPA-deoxyglucose as a potential cancer radiopharmaceutical (2010) Am. J. Roentgenol., 194 (3), pp. 761-765; Dadachov, M.S., Lambrecht, R.M., 188W/188Re gel generators based on metal tungstates (1995) J. Radioanal. Nucl. Chem., 200 (3), pp. 211-221; Dash, A., Development of novel radionuclide generators for biomedical applications (2011) BARC Newsletter, pp. 45-49. , Founder's Day Special Issue; Dash, A., Knapp, F.F., Pillai, M.R.A., 99Mo/99mTc separation: an assessment of technology options (2013) Nucl. Med. Biol., 40 (2), pp. 167-176; De Blois, E., Chan, H.S., Naidoo, C., Prince, D., Krenning, E.P., Breeman, W.A., Characteristics of SnO2-based 68Ge/68Ga generator and aspects of radiolabelling DOTA-peptides (2011) Int. J. Appl. Radiat. Isot., 69 (2), pp. 308-315; De Rosales, R.T.M., Blower, P., (2009), pp. 317-346. , IAEA Radioisotopes Radiopharmaceuticals Series no.1, The Role of 99mTc in The Development of Rhenium Radiopharmaceuticals, Chapter 16; Eckelman, W.C., Unparalleled contribution of Technetium-99m to medicine over 5 decades (2009) JACC: Cardiovasc. Imaging, 2 (3), pp. 364-368; Essa, B.M., Sakr, T.M., Khedr, M.A., El-Essawy, F.A., El Mohty, A.A., 99mTc-amitrole as a novel selective imaging probe for solid tumor: In silico and preclinical pharmacological study (2015) Eur. J. Pharm. Sci., 76, pp. 102-109; Fani, M., Andre�, J.P., Maecke, H.R., 68Ga-PET: a powerful generator-based alternative to cyclotron-based PET radiopharmaceuticals (2008) Contrast Media Mol. Imaging, 3 (2), pp. 53-63; Fasih, T.W., Sakr, T.M., Ayoub, R.R., Amin, M., Preparation and evaluation of nano-crystalline titania as sorbent for 99Mo/99mTc generator (2016) Sep. Sci. Technol., 51 (13), pp. 2115-2121; Fellner, M., Baum, R.P., Kub�cek, V., Hermann, P., Lukes, I., Prasad, V., Rosch, F., PET/CT imaging of osteoblastic bone metastases with 68Ga-bisphosphonates: first human study (2010) Eur. J. Nucl. Med. Mol. Imaging, 37 (4). , (834-834); Finn, R.D., Molinski, V.J., Hupf, H.B., Kramer, H., Radionuclide generators for biomedical applications (1983) Nuclear science series, nuclear medicine, pp. 97-157. , In: United States Department of Energy, NAS-NS-3202 (DE83016360); Firestone, R.B., Shirley, V.S., Baglin, C.M., Chu, S.Y.F., Zipkin, J., (1997) Table of Isotopes, , 8th edition Wiley New York; Green, M.A., Welch, M.J., Gallium radiopharmaceutical chemistry (1989) Int. J. Rad. Appl. Instrum. B, 16 (5), pp. 435-448; Guhlke, S., Beets, A.L., Oetjen, K., Mirzadeh, S., Biersack, H.J., Knapp, F.F., Simple new method for effective concentration of 188Re solutions from alumina-based 188W-188Re generator (2000) J. Nucl. Med., 41 (7), pp. 1271-1278; Guillaume, M., Brihaye, C., Generators for short-lived gamma and positron emitting radionuclides: current status and prospects (1986) Nucl. Med. Biol., 13, pp. 89-100; Hafeli, U.O., Warburton, M.C., Landau, U., (1998) Biomaterials, 19, p. 925; Ibrahim, A.B., Sakr, T.M., Khoweysa, O.M.A., Motaleb, M.A., Abd El-Bary, A., El-Kolaly, M.T., Formulation and preclinical evaluation of 99mTc�gemcitabine as a novel radiopharmaceutical for solid tumor imaging (2014) J. Radioanal. Nucl. Chem., 302 (1), pp. 179-186; Iller, E., Wawszczak, D., Konior, M., Motrenko, H.P., Milczarek, J.J., Gorski, L., Synthesis and structural investigations of gel metal oxide composites WO3�ZrO2, WO3�TiO2, WO3�ZrO2�SiO2, and their evaluation as materials for the preparation of 188W/188Re generator (2013) Int. J. Appl. Radiat. Isot., 75, pp. 115-127; Development of Alternative Technologies for Gel-Type Chromatographic Tc-99m Generator (1994) IAEA Research Co-ordination Meeting, , Vienna, Austria; Alternative Technologies for 99mTc Generators (1995) Final Rep. of Coordinated Research Program, , IAEA TECDOC-582; (2005) Report of Consultants Meeting on Radionuclide Generators for Industrial Radiotracer Technology, , Vienna, Austria; (2010), a. IAEA Radioisotopes Radiopharmaceuticals series no.1, Production of long lived parent radionuclides for generators: 68Ge, 82Sr, 90Sr and 188W, Vienna, Austria; (2010), b. Nuclear Technology Review (NTR-2010), Production and Supply of Molybdnum-99, NTR-2010 Annex VII, Vienna, Austria, 150-173; Radiotracer Generators for Industrial Applications (2013), IAEA Radiation Technology Series No. 5, Vienna, Austria; Jeong, J.M., Knapp, F.F., Jr, Use of the Oak Ridge National Laboratory Tungsten-188/Rhenium-188 generator for preparation of the Rhenium-188 HDD/Lipiodol complex for trans-arterial liver cancer therapy (2008) Semin. Nucl. Med., 38 (2), pp. S19-S29; Junior, J.A.O., Lima, A.L.V.P., Da Silva, N.C., Da Silva, R.C., Nieto, R.C., De Velosa, A.C., Preparation of a Gel of Zirconium Molybdate For Use in the Generators of 99Mo/99mTc Prepared With 99Mo Produced by the 98Mo(n,?)99Mo Reaction (1998), International Meeting on Reduced Enrichment for Research and Test Reactors Sao Paulo, Brazil; Kamioki, H., Mirzadeh, S., Lambrecht, R.M., Knapp, F.F., Jr, Dadachova, E., 188W/188Re generator for biomedical applications (1994) Radiochim. Acta, 65, pp. 39-46; Kharisov, B.I., Kharissova, O.V., Berdonosov, S.S., Radioactive nanoparticles and their main applications: recent advances (2014) Recent Pat. Nanotechnol., 8 (2), pp. 1-18; Knapp, F.F., Jr, Baum, R.P., Radionuclide generators - a new renaissance in the development of technologies to provide diagnostic and therapeutic radioisotopes for clinical applications (2012) Curr. Radiopharm., 5 (3), pp. 175-177; Knapp, F.F., Jr, Callahan, A.P., Beets, A.L., Mirzadeh, S., processing of reactor-produced 188W for fabrication of clinical scale alumina based 188W/188Re generators (1994) Int. J. Appl. Radiat. Isot., 45, pp. 1123-11238; Knapp, F.F., Jr, Mirzadeh, S., Beets, A.L., Reactor production and processing of therapeutic radioisotopes for applications in nuclear medicine (1996) J. Radioanal. Nucl. Chem. Lett., 205, pp. 93-100; Knapp, F.F., Jr, Mirzadeh, S., Beets, A.L., O'Doherty, M., Blower, P.J., Verdera, E.S., Gaudiano, J.S., Biersack, H.J., Reactor-produced radioisotopes from ORNL for bone pain palliation (1998) Int. J. Appl. Radiat. Isot., 49 (4), pp. 309-315; Knapp, F.F., Jr, Spencer, R., Kropp, J., Intravascular radiation therapy with radioactive liquid-filled balloons for inhibition of restenosis after angioplasty: a new opportunity for nuclear medicine (2001) J. Nucl. Med., 42 (9), pp. 1384-1387; Krasikova, R.N., Kodina, G.E., Radionuclides and radiopharmaceuticals for single-photon emission tomography, positron emission tomography and radiotherapy in Russia (1999) Eur. J. Nucl. Med., 26 (7), pp. 774-788; Kyzas, G.Z., Matis, K.A., Nanoadsorbents for pollutants removal: a review (2015) J. Mol. Liq., 203, pp. 159-168; Lambrecht, R.M., Radionuclide generators (1983) Radiochim. Acta, 34, pp. 9-24; Lambrecht, R.M., Sajjad, M., Accelerator-derived radionuclide generators (1988) Radiochim. Acta, 43, pp. 171-179; Liepe, K., Hlises, R., Kropp, J., Gruning, T., Runge, R., Koch, R., Knapp, F.F., Franke, W.G., Rhenium-188-HEDP in palliative treatment of bone metastases (2000) Cancer Biother. Radiopharm., 15, pp. 261-265; Loktionova, N.S., Belozub, A.N., Filosofov, D.V., Zhernosekov, K.P., Wagner, T., Turler, A., Rosch, F., Improved column-based radiochemical processing of the generator produced 68Ga (2011) Int. J. Appl. Radiat. Isot., 69, pp. 942-946; Mansur, M.S., Mushtaq, A., Jehangir, M., Concentration of 99mTc-Pertechnetate and 188Re-Perrhenate (2006) Radiochim. Acta, 94, pp. 107-111; McElvany, K.D., Hopkins, K.T., Welch, M.J., Comparison of 68Ge/68Ga generators systems for radiopharmaceutical production (1984) Int. J. Appl. Radiat. Isot., 35, pp. 521-524; Meloni, S., Brandone, A., A new technetium-99m generator using manganese dioxide (1968) Int. J. Appl. Radiat. Isot., 19 (2), pp. 164-166; Molinsky, V.J., A review of 99mTc generator technology (1982) Int. J. Appl. Radiat. Isot., 33 (10), pp. 811-819; Monroy-Guzman, F., Diaz-Archundia, L.V., Contreras Ram�rez, A., Effect of Zr:Mo ratio on 99mTc generator performance based on zirconium molybdate gels (2003) Int. J. Appl. Radiat. Isot., 59, pp. 27-34; Monroy-Guzman, F., D�az-Archundia, L.V., Hern�ndez-Cort�s, S., 99Mo/99mTc generators performances prepared from zirconium molybate gels (2008) J. Braz. Chem. Soc., 19, pp. 380-388; Mostafa, M., Motaleb, M.A., Sakr, T.M., Labeling of ceftriaxone for infective inflammation imaging using 99mTc eluted from 99Mo/99mTc generator based on zirconium molybdate (2010) Int. J. Appl. Radiat. Isot., 68 (10), pp. 1959-1963; Motaleb, M.A., Sakr, T.M., Synthesis and preclinical pharmacological evaluation of 99mTc-TEDP as a novel bone imaging agent (2011) J. Label. Compd. Radiopharm., 54 (9), pp. 597-601; Mushtaq, A., Recovery of enriched 186W from spent 188W/188Re generator (1996) Int. J. Appl. Radiat. Isot., 47 (8), pp. 727-729; Mushtaq, A., Concentration of 99mTcO4-/188ReO4- by a single, compact, anion exchange cartridge (2004) Nucl. Med. Commun., 25 (9), pp. 957-962; Narasimhan, D.V.S., Vanaja, P., Mani, R.S., A new method for 99mTc generator preparation (1984) J. Radioanal. Nucl. Chem., 85 (6), pp. 345-355; Osso, J., Knapp, F.F., (2011) Sampson's Textbook of Radiopharmacy, , 4th edition Pharmaceutical Press London, U.K; Osso, J.A., Catanoso, M.F., Barrio, G., Brambilla, T.P., Teodoro, R., Dias, C.R.B.R., Suzuki, K.N., Technetium-99m: new production and processing strategies to provide adequate levels for SPECT imaging (2012) Curr. Radiopharm., 5 (3), pp. 178-186; Pagou, M., Zerizer, I., Al-Nahhas, A., Can gallium-68 compounds partly replace 18F-FDG in PET molecular imaging? (2009) Hell. J. Nucl. Med., 12 (2), pp. 102-105; Palmedo, H., Guhlke, S., Bender, H., Sartor, J., Schoeneich, G., Grunwald, F., Knapp, F.F., Jr, Biersack, H.J., Dose escalation study with rhenium-188 hydroxyethylidene diphosphonate in prostate cancer patients with osseous metastases (2000) Eur. J. Nucl. Med., 27 (2), pp. 123-130; Pillai, M.R.A., Metallic Radionuclides and Therapeutic Radiopharmaceuticals, Rhenium Radiopharmaceuticals (2010), pp. 108-142. , Institute of Nuclear Chemistry and Technology Warsaw; Pillai, M.R.A., Dash, A., Knapp, F.F., Jr, Rhenium-188: availability from the 188W/188Re Generator and Status of Current Applications (2012) Curr. Radiopharm., 5 (3), pp. 228-243; Ponsard, B., Hiltunen, J., Penttilla, P., Vera Ruiz, H., Beets, A.L., Mirzadeh, S., Knapp, F.F., Jr, The tungsten-188/rhenium-188 generator: effective coordination of tungsten-188 production between the HFIR and BR2 reactors (2003) J. Radioanal. Nucl. Chem., 257 (1), pp. 169-174; Ramamoorthy, N., Editorial commentary supplies of Molybdnum-99: need for sustainable strategies and enhanced international cooperation (2009) Nucl. Med. Commun., 30 (12), pp. 899-905; Richards, P., (1966) Radioactive Radiopharmaceuticals, PROC. CONF.-651111, National Bureau of Standards, pp. 155-163. , a. In Springfield, Virginia; Richards, P., (1966), b. In Radioactive Pharmaceuticals, Symposium #6, Conference 651111, US Atomic Energy Commission, Washington, DC; Robson, J., The incorporation of iodine-132 into organic compounds (1960) Int. J. Appl. Radiat. Isot., 9 (1-4), pp. 126-129; Rosch, F., Maturation of a key resource-the germanium-68/gallium-68 generator: development and new insights (2012) Curr. Radiopharm., 5 (3), pp. 202-211; Rosch, F., 68Ge/68Ga generators: past, present, and future (2013) Recent Results Cancer Res., 194, pp. 3-16; Rosch, F., Riss, P.J., The renaissance of the ??Ge/??Ga radionuclide generator initiates new developments in ??Ga radiopharmaceutical chemistry (2010) Curr. Top. Med. Chem., 10 (16), pp. 1633-1668; Rutherford, E., Brooks, H.T., (1901) Trans. R. Soc. Can., 7, p. 21; Rutherford, E., Owens, R.B., (1899) Trans. R. Soc. Can., 2, pp. 9-12; Saha, G.B., (1992) Fundamentals of Nuclear Pharmacy, , 3rd edition Springer-Verlage New York; Sakr, T.M., Motaleb, M.A., Ibrahim, I.T., Labeling of ceftriaxone for infective inflammation imaging using 99mTc eluted from 99Mo/99mTc generator based on zirconium molybdate (2012) J. Radioanal. Nucl. Chem., 292 (2), pp. 705-710; Sakr, T.M., El-Safoury, D.M., Awad, G.A.S., Motaleb, M.A., Biodistribution of 99mTc?sunitinib as a potential radiotracer for tumor hypoxia imaging (2013) J. Label. Compd. Radiopharm., 56 (8), pp. 392-395; Sakr, T.M., Moustapha, M.E., Motaleb, M.A., 99mTc-nebivolol as a novel heart imaging radiopharmaceutical for myocardial infarction assessment (2013) J. Radioanal. Nucl. Chem., 295 (2), pp. 1511-1516; Sakr, T.M., Essa, B.M., El-Essawy, F.A., El Mohty, A.A., Synthesis and biodistribution of 99mTc-PyDA as a potential marker for tumor hypoxia imaging (2014) Radiochemistry, 56 (1), pp. 76-80; Sarkar, S.K., Venkatesh, M., Ramamoorthy, N., Evaluation of two methods for concentrating perrhenate (188Re) eluates obtained from 188W�188Re generator (2009) Int. J. Appl. Radiat. Isot., 67 (2), pp. 234-239; Savio, E., Gaudiano, J., Robles, A.M., Balter, H., Paolino, A., Lo�pez, A., Hermida, J.C., Knapp, F.F., Jr, Re-HEDP: pharmacokinetic characterization, clinical and dosimetric evaluation in osseous metastatic patients with two levels of radiopharmaceutical dose (2001) BMC Nucl. Med., 1, p. 2; Schmid, G., (2010) Nanoparticles: >From Theory to Application, , 2nd edition Weinheim: Wiley-VCH; Selvin, G.J., Stang, J.L.G., Tucker, W.D., Winsche, W.E., (1955), Iodine-132 Generator and Shipping Container, U.S. patent, US; Shafiq, Y.F., Yousif, Z.M., Characteristics and behavior of a99Mo/99mTc generator using irradiated titanium molybdate as column matrix (1995) J. Radioanal. Nucl. Chem. Lett., 199 (3), pp. 173-181; Subramanian, G., Radiopharmacy (1976), p. 556. , John Wiley & Sons New York; Subramanian, G., McAfee, J.G., A radioisotope generator of indium-113m (1967) Int. J. Appl. Radiat. Isot., 18 (4), pp. 215-221. , https://doi.org/10.1016/0020-708X)(67)(90084-1; Tzanopoulou, S., Sagnou, M., Paravatou-Petsotas, M., Gourni, E., Loudos, G., Xanthopoulos, S., Lafkas, D., Pelecanou, M., Evaluation of 188Re and 99mTc complexes of 2-(4?-aminophenyl)benzothiazole as potential breast cancer radiopharmaceuticals (2010) J. Med. Chem., 53 (12), pp. 4633-4641; Vanaja, P., Ramamoorthy, N., Iyer, S.P., Mani, R.S., Development of a new 99mTc generator using neutron irradiated Titanium Molybdate as Cotumn Matrix (1987) Radiochim. Acta, 42 (1), pp. 49-52. , https://doi.org/10.1524/ract.1987.42.1.49; Veall, N., Pearson, J.D., Hanley, T., The preparation of 132I and 131I labelled human serum Albumin for clinical tracer studies (1955) Br. J. Radiol., 28 (335), pp. 633-635; Velikyan, I., Beyer, G.J., Langstr�m, B., Microwave-supported preparation of 68Ga bioconjugates with high specific radioactivity (2004) Bioconjugate Chem., 15 (3), pp. 554-560; Weinberger, J., Giedd, K.N., Simon, A.D., Marboe, C., Knapp, F.F., Jr, Trichter, F., Amols, H., Radioactive beta-emitting solution-filled balloon treatment prevents porcine coronary restenosis (1999) Cardiovasc. Radiat. Med., 1 (3), pp. 252-256; Winsche, W.E., Stang, L.G., Tucker, W.D., Production of Iodine-132 (1951) Nucleonics, 8 (3), pp. 14-18; Yousefi, T., Khanchi, A.R., Ahmadi, S.J., Rofouei, M.K., Yavari, R., Davarkhah, R., Myanji, B., Cerium(III) molybdate nanoparticles: synthesis, characterization and radionuclides adsorption studies (2012) J. Hazard. Mater., 215-216, pp. 266-271; Zaidi, J.H., Karim, H.M.A., Arif, M., Quershi, H.I., Qaim, S.M., Fission neutron spectrum averaged cross sections of some threshold reactions on Molybdenum: estimation of radioactive impurities in (n, ?)-produced 99Mo-99mTc generator system (1990) Radiochim. Acta, 49, pp. 107-112. , https://doi.org/10.1524/ract.1990.49.3.107; Zhernosekov, K.P., Filosofov, D.V., Baum, R.P., Aschoff, P., Bihl, H., Razbash, A.A., Processing of generator-produced 68Ga for medical application (2007) J. Nucl. Med., 48, pp. 1741-1748; Zolle, I., Technetium-99m Radiopharmaceuticals: preparation and Quality Control in Nuclear Medicine (2007), Springer Berlin | |
dcterms.source | Scopus |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- avatar_scholar_128.png
- Size:
- 2.73 KB
- Format:
- Portable Network Graphics
- Description: