Stabilizing excipients for engineered clopidogrel bisulfate procubosome derived in situ cubosomes for enhanced intestinal dissolution: Stability and bioavailability considerations
dc.Affiliation | October University for modern sciences and Arts (MSA) | |
dc.contributor.author | El-Laithy H.M. | |
dc.contributor.author | Badawi A. | |
dc.contributor.author | Abdelmalak N.S. | |
dc.contributor.author | Elsayyad N.M.E. | |
dc.contributor.other | Department of Pharmaceutics and Industrial Pharmacy | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | Cairo University | |
dc.contributor.other | Egypt; Department of Pharmaceutics and Industrial Pharmacy | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | October University for Modern Sciences and Arts (MSA University) | |
dc.contributor.other | Egypt | |
dc.date.accessioned | 2020-01-09T20:40:35Z | |
dc.date.available | 2020-01-09T20:40:35Z | |
dc.date.issued | 2019 | |
dc.description | Scopus | |
dc.description.abstract | Clopidogrel bisulfate (CB) is a golden antiplatelet treatment, yet its benefits are limited by its low bioavailability (<50%) caused by poor intestinal solubility and absorption. The present study aims to improve CB intestinal solubility and absorption through developing a novel stable dry CB procubosomes tablets ready to disintegrate and re-disperse upon dilution in the GIT forming in situ CB cubosome nanoparticles while simultaneously overcome the poor stability of conventional cubosome dispersion at room temperature. Glyceryl monooleate based CB cubosome dispersion was prepared using Poloxamer 407 as surfactant, freeze dried using different stabilizing excipients (dextrose, mannitol and avicel) then compressed into procubosome tablets. The effect of excipient's physicochemical properties on the flowability, in vitro dissolution and stability at accelerated conditions (40 � 2 �C/75 � 5% RH) were evaluated. The prepared procubosomes exhibited an excipient type dependent dissolution profile where Avicel based procubosome tablet CF2 showed the highest in vitro dissolution profile among other excipients used during the freeze drying process. Upon transition to intestinal pH of 6.8 to mimic the drug absorption site, CF2 procubosome Avicel tablet, was able to preserve the enhanced CB release profile (99.6 � 6.92%) compared to commercial Plavix� where, CB dissolved % dropped dramatically to 79.1 � 2.45%. After storage for six months, CF2 retained the fresh tablet drug content of 98.5 � 5.82% and dissolution properties. Moreover, following oral administration in rabbits, CF2 showed higher relative bioavailability (153%) compared to commercial Plavix� with significant higher Cmax,shorter tmax, as well as enhanced antiplatelet activity. � 2019 Elsevier B.V. | en_US |
dc.description.uri | https://www.scimagojr.com/journalsearch.php?q=21331&tip=sid&clean=0 | |
dc.identifier.doi | https://doi.org/10.1016/j.ejps.2019.06.008 | |
dc.identifier.doi | PubMed ID 31189083 | |
dc.identifier.issn | 9280987 | |
dc.identifier.other | https://doi.org/10.1016/j.ejps.2019.06.008 | |
dc.identifier.other | PubMed ID 31189083 | |
dc.identifier.uri | https://t.ly/7OM2E | |
dc.language.iso | English | en_US |
dc.publisher | Elsevier B.V. | en_US |
dc.relation.ispartofseries | European Journal of Pharmaceutical Sciences | |
dc.relation.ispartofseries | 136 | |
dc.subject | Bioavailability | en_US |
dc.subject | Clopidogrel bisulfate | en_US |
dc.subject | Cubosomes | en_US |
dc.subject | Freeze drying | en_US |
dc.subject | Procubosomes | en_US |
dc.subject | Stability | en_US |
dc.subject | Stabilizing excipients | en_US |
dc.subject | clopidogrel | en_US |
dc.subject | glucose | en_US |
dc.subject | glycerol oleate | en_US |
dc.subject | mannitol | en_US |
dc.subject | microcrystalline cellulose | en_US |
dc.subject | poloxamer | en_US |
dc.subject | clopidogrel | en_US |
dc.subject | excipient | en_US |
dc.subject | nanoparticle | en_US |
dc.subject | animal experiment | en_US |
dc.subject | antiplatelet activity | en_US |
dc.subject | Article | en_US |
dc.subject | dilution | en_US |
dc.subject | drug absorption | en_US |
dc.subject | drug bioavailability | en_US |
dc.subject | drug delivery system | en_US |
dc.subject | drug solubility | en_US |
dc.subject | drug stability | en_US |
dc.subject | freeze drying | en_US |
dc.subject | in vitro study | en_US |
dc.subject | maximum concentration | en_US |
dc.subject | nanoengineering | en_US |
dc.subject | nonhuman | en_US |
dc.subject | pH | en_US |
dc.subject | physical chemistry | en_US |
dc.subject | priority journal | en_US |
dc.subject | room temperature | en_US |
dc.subject | tablet compression | en_US |
dc.subject | tablet porosity | en_US |
dc.subject | animal | en_US |
dc.subject | bioavailability | en_US |
dc.subject | chemistry | en_US |
dc.subject | drug effect | en_US |
dc.subject | intestine | en_US |
dc.subject | Leporidae | en_US |
dc.subject | male | en_US |
dc.subject | metabolism | en_US |
dc.subject | oral drug administration | en_US |
dc.subject | particle size | en_US |
dc.subject | procedures | en_US |
dc.subject | solubility | en_US |
dc.subject | tablet | en_US |
dc.subject | Administration, Oral | en_US |
dc.subject | Animals | en_US |
dc.subject | Biological Availability | en_US |
dc.subject | Clopidogrel | en_US |
dc.subject | Drug Delivery Systems | en_US |
dc.subject | Excipients | en_US |
dc.subject | Freeze Drying | en_US |
dc.subject | Intestines | en_US |
dc.subject | Male | en_US |
dc.subject | Nanoparticles | en_US |
dc.subject | Particle Size | en_US |
dc.subject | Poloxamer | en_US |
dc.subject | Rabbits | en_US |
dc.subject | Solubility | en_US |
dc.subject | Tablets | en_US |
dc.title | Stabilizing excipients for engineered clopidogrel bisulfate procubosome derived in situ cubosomes for enhanced intestinal dissolution: Stability and bioavailability considerations | en_US |
dc.type | Article | en_US |
dcterms.isReferencedBy | Abdelwahed, W., Degobert, G., Stainmesse, S., Fessi, H., Freeze-drying of nanoparticles: formulation, process and storage considerations (2006) Adv. Drug Deliv. Rev., 58, pp. 1688-1713; Ali, M.A., Kataoka, N., Ranneh, A.H., Iwao, Y., Noguchi, S., Oka, T., Itai, S., Enhancing the solubility and oral bioavailability of poorly water-soluble drugs using monoolein cubosomes (2017) Chem Pharm Bull, 65, pp. 42-48; Bala, R., Khanna, S., Pawar, P., Formulation and optimization of fast dissolving intraoral drug delivery system for clobazam using response surface methodology (2013) J Adv Pharm Technol Res, 4, pp. 151-159; Bali, D.E., Osman, M.A., El Maghraby, G.M., Enhancement of dissolution rate and intestinal stability of clopidogrel hydrogen sulfate (2016) Eur J Drug Metabol Pharmacokinet, 41, pp. 807-818; Boyd, B., Characterisation of drug release from cubosomes using the pressure ultrafiltration method (2003) Int. J. Pharm., 260, pp. 239-247; Boyd, B.J., Whittaker, D.V., Khoo, S.M., Davey, G., Lyotropic liquid crystalline phases formed from glycerate surfactants as sustained release drug delivery systems (2006) Int. J. Pharm., 309, pp. 218-226; Clogston, J., Caffrey, M., Controlling release from the lipidic cubic phase. Amino acids, peptides, proteins and nucleic acids (2005) J. Control. Release, 107, pp. 97-111; Davis, S.S., Hardy, J.G., Fara, J.W., Transit of pharmaceutical dosage forms through the small intestine (1986) Gut, 27, pp. 886-892; El-Laithy, H.M., Badawi, A., Abdelmalak, N.S., El-Sayyad, N., Cubosomes as oral drug delivery systems: a promising approach for enhancing the release of clopidogrel bisulphate in the intestine (2018) Chem Pharm Bull, (12), pp. 1165-1173; Farid, N.A., Kurihara, A., Wrighton, S.A., Metabolism and disposition of the thienopyridine antiplatelet drugs ticlopidine, clopidogrel, and prasugrel in humans (2010) J. Clin. Pharmacol., 50, pp. 126-142; Feng, D., Peng, T., Huang, Z., Singh, V., Shi, Y., Wen, T., Lu, M., Wu, C., Polymer(-)surfactant system based amorphous solid dispersion: precipitation inhibition and bioavailability enhancement of itraconazole (2018) Pharmaceutics, 10; Fernandes, R.V.D.B., Borges, S.V., Botrel, D.A., Oliveira, C.R.D., Physical and chemical properties of encapsulated rosemary essential oil by spray drying using whey protein-inulin blends as carriers (2014) Int. J. Food Sci. Technol., 49, pp. 1522-1529; Gamble, J.F., Chiu, W.S., Tobyn, M., Investigation into the impact of sub-populations of agglomerates on the particle size distribution and flow properties of conventional microcrystalline cellulose grades (2011) Pharm. Dev. Technol., 16, pp. 542-548; Ganem-Quintanar, A., Quintanar-Guerrero, D., Buri, P., Monoolein: a review of the pharmaceutical applications (2000) Drug Dev. Ind. Pharm., 26, pp. 809-820; Hartnett, T.E., O'Connor, A.J., Ladewig, K., Cubosomes and other potential ocular drug delivery vehicles for macromolecular therapeutics (2015) Expert Opin Drug Deliv, 9, pp. 1-15; Ibrahim, I.R., Ibrahim, M.I.M., Al-Haddad, M.S.D., The influence of consumers' preferences and perceptions of oral solid dosage forms on their treatment (2012) Int J ClinPharm, 34, pp. 728-732; Ingvarsson, P.T., Yang, M., Nielsen, H.M., Rantanen, J., Foged, C., Stabilization of liposomes during drying (2011) Expert Opin Drug Deliv, 8, pp. 375-388; ICH Harmonized Triparitate Guideline: Stability Testing of New Drug Substances and Products Q1A (R2) (2003); Jarvis, B., Simpson, K., Clopidogrel: a review of its use in the prevention of Atherothrombosis (2000) Drugs, 60, pp. 347-377; Jassim, Z.E., Hussein, A.A., Formulation and evaluation of clopidogrel tablet incorporating drug nanoparticles (2014) Int J Pharm Pharm Sci, 6, pp. 838-851; Javadzadeh, Y., Shariati, H., Movahhed-Danesh, E., Nokhodchi, A., Effect of some commercial grades of microcrystalline cellulose on flowability, compressibility, and dissolution profile of piroxicam liquisolid compacts (2009) Drug Dev. Ind. Pharm., 35, pp. 243-251; Karazniewicz-Lada, M., Danielak, D., Burchardt, P., Kruszyna, L., Komosa, A., Lesiak, M., Glowka, F., Clinical pharmacokinetics of clopidogrel and its metabolites in patients with cardiovascular diseases (2014) Clin. Pharmacokinet., 53, pp. 155-164; Kim, Y.I., Kim, K.S., Suh, K.H., Shanmugam, S., Woo, J.S., Yong, C.S., Choi, H.G., New clopidogrel napadisilate salt and its solid dispersion with improved stability and bioequivalence to the commercial clopidogrel bisulphate salt in beagle dogs (2011) Int. J. Pharm., 415, pp. 129-139; Kim, D.W., Kwon, M.S., Yousaf, A.M., Balakrishnan, P., Park, J.H., Kim, D.S., Lee, B.J., Choi, H.G., Comparison of a solid SMEDDS and solid dispersion for enhanced stability and bioavailability of clopidogrel napadisilate (2014) Carbohyd. Polym, 114, pp. 365-374; Kwon, T.K., Hong, S.K., Kim, J.-C., In vitro skin permeation of cubosomes containing triclosan (2012) J. Ind. Eng. Chem., 18, pp. 563-567; Lai, J., Chen, J., Lu, Y., Sun, J., Hu, F., Yin, Z., Wu, W., Glyceryl monooleate/poloxamer 407 cubic nanoparticles as oral drug delivery systems: I. In vitro evaluation and enhanced oral bioavailability of the poorly water-soluble drug simvastatin (2009) AAPS PharmSciTech, 10, pp. 960-966; Lassoued, M.A., Sfar, S., Bouraoui, A., Khemiss, F., Absorption enhancement studies of clopidogrel hydrogen sulphate in rat everted gut sacs (2012) J. Pharm. Pharmacol., 64, pp. 541-552; Lee, Y.S., Song, J.G., Lee, S.H., Han, H.K., Sustained-release solid dispersion of pelubiprofen using the blended mixture of aminoclay and pH independent polymers: preparation and in vitro/in vivo characterization (2017) Drug Deliv, 24, pp. 1731-1739; Magenheim, B., Levy, M.Y., Benita, S., A new in vitro technique for the evaluation of drug release profile from colloidal carriers - ultrafiltration technique at low pressure (1993) Int. J. Pharm., 94 (1993), pp. 115-123; Mehr, H.M., Elahi, M., Razavi, S.M.A., Experimental study on optimization of the agglomeration process for producing instant sugar by conical fluidized bed agglomerator (2012) Dry. Technol., 30, pp. 505-515; Moebus, K., Siepmann, J., Bodmeier, R., Cubic phase-forming dry powders for controlled drug delivery on mucosal surfaces (2012) J. Control. Release, 157, pp. 206-215; Molero, L., Lopez-Farre, A., Mateos-Caceres, P.J., Fernandez-Sanchez, R., Luisa Maestro, M., Silva, J., Rodriguez, E., Macaya, C., Effect of clopidogrel on the expression of inflammatory markers in rabbit ischemic coronary artery (2005) Br. J. Pharmacol., 146, pp. 419-424; Moore, J.W., Flanner, H.H., Mathematical comparison of curves with an emphasis on in vitro dissolution profiles (1996) Pharm. Technol., 20, pp. 64-74; Mostafa, H.F., Ibrahim, M.A., Sakr, A., Development and optimization of dextromethorphan hydrobromide oral disintegrating tablets: effect of formulation and process variables (2013) Pharm. Dev. Technol., 18, pp. 454-463; Nasr, M., Dawoud, M., Sorbitol based powder precursor of cubosomes as an oral delivery system for improved bioavailability of poorly water soluble drugs (2016) J Drug Deliv Sci Technol, 35, pp. 106-113; Nirogi, R.V., Kandikere, V.N., Shukla, M., Mudigonda, K., Maurya, S., Boosi, R., Quantification of clopidogrel in human plasma by sensitive liquid chromatography/tandem mass spectrometry (2006) Rapid Commun. Mass Spectrom., 20, pp. 1695-1700; Porter, C.J., Trevaskis, N.L., Charman, W.N., Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs (2007) Nat. Rev. Drug Discov., 6, pp. 231-248; Porter, C.J., Cuine, J.F., Charman, W.N., Enhancing intestinal drug solubilisation using lipid-based delivery systems (2008) Adv. Drug Deliv. Rev., 60, pp. 673-691; Prajapati, V., Jain, A., Jain, R., Sahu, S., Kohli, D.V., Treatment of cutaneous candidiasis through fluconazole encapsulated cubosomes (2014) Drug Deliv Transl Res, 4, pp. 400-408; Pulcinelli, F.M., Pignatelli, P., Celestini, A., Riondino, S., Gazzaniga, P.P., Violi, F., Inhibition of platelet aggregation by aspirin progressively decreases in long-term treated patients (2004) J. Am. Coll. Cardiol., 43, pp. 979-984; Raijada, D.K., Prasad, B., Paudel, A., Shah, R.P., Singh, S., Characterization of degradation products of amorphous and polymorphic forms of clopidogrel bisulphate under solid state stress conditions (2010) J. Pharm. Biomed. Anal., 52, pp. 332-344; Rawat, M., Saraf, S., Saraf, S., Influence of selected formulation variables on the preparation of enzyme-entrapped Eudragit S100 microspheres (2007) AAPS PharmSciTech, 8, p. E116; Remko, M., Remkova, A., Broer, R., A comparative study of molecular structure, pKa, lipophilicity, solubility, absorption and polar surface area of some antiplatelet drugs (2016) Int. J. Mol. Sci., 17, p. 388; Risovic, V., Sachs-Barrable, K., Boyd, M., Wasan, K.M., Potential mechanisms by which Peceol� increases the gastrointestinal absorption of amphotericin B (2004) Drug Dev. Ind. Pharm., 30, pp. 767-774; Sadhale, Y., Shah, J.C., Glyceryl monooleate cubic phase gel as chemical stability enhancer of cefazolin and cefuroxime (1998) Pharm. Dev. Technol., 3, pp. 549-556; Sangkuhl, K., Klein, T.E., Altman, R.B., Clopidogrel pathway (2010) Pharmacogenet Genom, 20, pp. 463-465; Savcic, M., Hauert, J., Bachmann, F., Wyld, P.J., Geudelyn, B., Cariou, R., Clopidogrel loading dose regimens: kinetic profile of pharmacodynamic response in healthy subjects (1999) Semin. Thromb. Hemost., 25, pp. 15-19; Savi, P., Herbert, J., Pflieger, A., Dol, F., Delebassee, D., Combalbert, J., Defreyn, G., Maffrand, J., Importance of hepatic metabolism in the antiaggregating activity of the thienopyridine clopidogrel (1992) Biochem. Pharmacol., 44, pp. 527-532; Schulze, D., Powders and Bulk Solids: Behavior, Characterization, Storage and Flow (2008), Springer-Verlag Berlin Heidelberg; Shah, J.C., Sadhale, Y., Chilukuri, D.M., Cubic phase gels as drug delivery systems (2001) Adv. Drug Deliv. Rev., 47; Skillman, K.L., Caruthers, R.L., Johnson, C.E., Stability of an extemporaneously prepared clopidogrel oral suspension (2010) Am. J. Health Syst. Pharm., 67, pp. 559-561; Sugidachi, A., Ogawa, T., Kurihara, A., Hagihara, K., Jakubowski, J.A., M, M.H., Niitsu, Y., Asai, F., The greater in vivo antiplatelet effects of prasugrel as compared to clopidogrel reflect more efficient generation of its active metabolite with similar antiplatelet activity to that of clopidogrel's active metabolite (2007) J. Thromb. Haemost., 5, pp. 1545-1551; Sullam, P.M., Bayer, A.S., Ramos, M., Li, C., Cheung, A.L., Yeaman, M.R., Staphylococcus aureus induces platelet aggregation via a fibrinogen-dependent mechanism which is independent of principal platelet glycoprotein IIb/IIIa fibrinogen-binding domains (1995) Infect. Immun., 63, pp. 3634-3641; Szabo, Z.I., Szekely-Szentmiklosi, B., Deak, B., Szekely-Szentmiklosi, I., Kovacs, B., Zoldi, K., Sipos, E., Study of the effect of formulation variables on the characteristics of combination tablets containing enalapril maleate and indapamide as active substances using experimental design (2016) Acta Pharma., 66, pp. 191-206; Taubert, D., von Beckerath, N., Grimberg, G., Lazar, A., Jung, N., Goeser, T., Kastrati, A., Schomig, E., Impact of P-glycoprotein on clopidogrel absorption (2006) Clin. Pharmacol. Ther., 80, pp. 486-501; Thapa, R.K., Baskaran, R., Madheswaran, T., Kim, J.O., Yong, C.S., Yoo, B.K., In vitro release and skin permeation of tacrolimus from monoolein-based liquid crystalline nanoparticles (2012) J Drug Deliv Sci Technol, 22, pp. 479-484; (2016) The United States Pharmacopeia 39/National Formulary 34, , The United States Pharmacopeial Convention Inc. Rockville, MD; Thoorens, G., Krier, F., Leclercq, B., Carlin, B., Evrard, B., Microcrystalline cellulose, a direct compression binder in a quality by design environment�a review (2014) Int. J. Pharm., 473, pp. 64-72; Van Eerdenbrugh, B., Froyen, L., Humbeeck, J.V., Martens, J.A., Augustijns, P., Mooter, G.V.D., Drying of crystalline drug nanosuspensions�the importance of surface hydrophobicity on dissolution behavior upon redispersion (2008) Eur. J. Pharm. Sci., 35, pp. 127-135; Van Eerdenbrugh, B., Vercruysse, S., Martens, J.A., Vermant, J., Froyen, L., Van Humbeeck, J., Van den Mooter, G., Augustijns, P., Microcrystalline cellulose, a useful alternative for sucrose as a matrix former during freeze-drying of drug nanosuspensions - a case study with itraconazole (2008) Eur. J. Pharm. Biopharm., 70, pp. 590-596; Wong, P.C., Crain, E.J., Watson, C.A., Jiang, X., Hua, J., Bostwick, J.S., Ogletree, M.L., Rehfuss, R., Platelet aggregometry and receptor binding to predict the magnitude of antithrombotic and bleeding time effects of clopidogrel in rabbits (2007) J. Cardiovasc. Pharmacol. Ther., 49, pp. 316-324; Yang, Z., Peng, X., Tan, Y., Chen, M., Zhu, X., Feng, M., Xu, Y., Wu, C., Optimization of the preparation process for an oral phytantriol-based amphotericin B cubosomes (2011) J. Nanomater., 2011, pp. 1-10; Yang, Z., Tan, Y., Chen, M., Dian, L., Shan, Z., Peng, X., Wu, C., Development of amphotericin B-loaded cubosomes through the SolEmuls technology for enhancing the oral bioavailability (2012) AAPS PharmSciTech, 13, pp. 1483-1491; Yang, Z., Chen, M., Yang, M., Chen, J., Fang, W., Xu, P., Evaluating the potential of cubosomal nanoparticles for oral delivery of amphotericin B in treating fungal infection (2014) Int. J. Nanomedicine, 9, pp. 327-336; Yousry, C., Elkheshen, S.A., El-Laithy, H.M., Essam, T., Fahmy, R.H., Studying the influence of formulation and process variables on Vancomycin-loaded polymeric nanoparticles as potential carrier for enhanced ophthalmic delivery (2017) Eur. J. Pharm. Sci., 100, pp. 142-154; Zupancic, V., Smrkolj, M., Benkic, P., Simonic, I., Plevnik, M., Ritlop, G., Kristl, A., Vrecer, F., Preformulation investigation of some clopidogrel addition salts (2010) Acta Chim. Slov., 57, pp. 376-385 | |
dcterms.source | Scopus |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- avatar_scholar_128.png
- Size:
- 2.73 KB
- Format:
- Portable Network Graphics
- Description: