Acovenoside A Induces Mitotic Catastrophe Followed by Apoptosis in Non-Small-Cell Lung Cancer Cells

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorEl Gaafary M.
dc.contributor.authorEzzat, Shahira M
dc.contributor.authorEl Sayed A.M.
dc.contributor.authorSabry O.M.
dc.contributor.authorHafner S.
dc.contributor.authorLang S.
dc.contributor.authorSchmiech M.
dc.contributor.authorSyrovets T.
dc.contributor.authorSimmet T.
dc.contributor.otherDepartment of Pharmacognosy
dc.contributor.otherCollege of Pharmacy
dc.contributor.otherCairo University
dc.contributor.otherGiza
dc.contributor.other11562
dc.contributor.otherEgypt; Pharmacognosy Department
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherOctober University for Modern Sciences and Arts (MSA)
dc.contributor.otherCairo
dc.contributor.other11562
dc.contributor.otherEgypt; Institute of Pharmacology of Natural Products and Clinical Pharmacology
dc.contributor.otherUlm University
dc.contributor.otherUlm
dc.contributor.otherD-89081
dc.contributor.otherGermany
dc.date.accessioned2020-01-09T20:41:10Z
dc.date.available2020-01-09T20:41:10Z
dc.date.issued2017
dc.descriptionScopus
dc.description.abstractWe investigated the cytotoxic potential of the cardenolide glycoside acovenoside A against non-small-cell lung cancer cells. Lung cancer is the leading cause of cancer-related mortality and the second most common cancer diagnosed. Epidemiological studies revealed a direct correlation between the regular administration of cardiac glycosides and a lower incidence of various cancers. Acovenoside A, isolated from the pericarps of Acokanthera oppositifolia, potently inhibited proliferation and induced cytotoxicity in A549 non-small-cell lung cancer cells with an IC 50 of 68 � 3 nM after 48 h of exposure. Compared to the antineoplastic agent doxorubicin, acovenoside A was more potent in inhibiting the viability of A549 cancer cells. Moreover, acovenoside A exhibited selectivity against cancer cells, being significantly less toxic to lung fibroblasts and nontoxic for peripheral blood mononuclear cells. Analysis of the cell cycle profile in acovenoside A-treated A549 cells revealed mitotic arrest, due to accumulation of the G 2 /M regulators cyclin B 1 and CDK1, and cytokinesis failure. Furthermore, acovenoside A affected the mitochondrial membrane integrity and induced production of radical oxygen species, which resulted in induction of canonical apoptosis, manifested by caspase 3 activation and DNA fragmentation. Based on our results, acovenoside A warrants further exploration as a potential anticancer lead. � 2017 The American Chemical Society and American Society of Pharmacognosy.en_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=23053&tip=sid&clean=0
dc.identifier.doihttps://doi.org/10.1021/acs.jnatprod.7b00546
dc.identifier.doiPubMed ID 29190084
dc.identifier.issn1633864
dc.identifier.otherhttps://doi.org/10.1021/acs.jnatprod.7b00546
dc.identifier.otherPubMed ID 29190084
dc.identifier.urihttps://t.ly/LXMeG
dc.language.isoEnglishen_US
dc.publisherAmerican Chemical Societyen_US
dc.relation.ispartofseriesJournal of Natural Products
dc.relation.ispartofseries80
dc.subjectOctober University for Modern Sciences and Arts
dc.subjectجامعة أكتوبر للعلوم الحديثة والآداب
dc.subjectUniversity of Modern Sciences and Arts
dc.subjectMSA University
dc.subjectacovenoside aen_US
dc.subjectcardenolideen_US
dc.subjectcaspase 3en_US
dc.subjectcyclin B1en_US
dc.subjectcyclin dependent kinase 1en_US
dc.subjectcytotoxic agenten_US
dc.subjectdoxorubicinen_US
dc.subjectebselenen_US
dc.subjectnorphenazoneen_US
dc.subjectprotein p53en_US
dc.subjectreactive oxygen metaboliteen_US
dc.subjecttempolen_US
dc.subjectunclassified drugen_US
dc.subjectacovenoside Aen_US
dc.subjectantineoplastic agenten_US
dc.subjectcardenolideen_US
dc.subjectdoxorubicinen_US
dc.subjectreactive oxygen metaboliteen_US
dc.subjectAcokanthera oppositifoliaen_US
dc.subjectapoptosisen_US
dc.subjectArticleen_US
dc.subjectcell cycleen_US
dc.subjectcell cycle progressionen_US
dc.subjectcell proliferationen_US
dc.subjectcell viabilityen_US
dc.subjectcontrolled studyen_US
dc.subjectcytokinesisen_US
dc.subjectcytotoxicityen_US
dc.subjectDNA fragmentationen_US
dc.subjectdrug mechanismen_US
dc.subjectdrug sensitivityen_US
dc.subjectfluorescenceen_US
dc.subjectG2 phase cell cycle checkpointen_US
dc.subjecthumanen_US
dc.subjecthuman cellen_US
dc.subjectIC50en_US
dc.subjectlung fibroblasten_US
dc.subjectlung non-small cell carcinoma cell lineen_US
dc.subjectM phase cell cycle checkpointen_US
dc.subjectmitochondrial membrane potentialen_US
dc.subjectmitosisen_US
dc.subjectmitosis inhibitionen_US
dc.subjectnon small cell lung canceren_US
dc.subjectoxidative stressen_US
dc.subjectpericarpen_US
dc.subjectperipheral blood mononuclear cellen_US
dc.subjectprotein phosphorylationen_US
dc.subjectshruben_US
dc.subjectA-549 cell lineen_US
dc.subjectapoptosisen_US
dc.subjectcell survivalen_US
dc.subjectdrug effecten_US
dc.subjectepidemiologyen_US
dc.subjectfibroblasten_US
dc.subjectlung tumoren_US
dc.subjectmetabolismen_US
dc.subjectmitochondrial membraneen_US
dc.subjectmitosisen_US
dc.subjectmononuclear cellen_US
dc.subjectnon small cell lung canceren_US
dc.subjecttumor cell lineen_US
dc.subjectA549 Cellsen_US
dc.subjectAntineoplastic Agentsen_US
dc.subjectApoptosisen_US
dc.subjectCarcinoma, Non-Small-Cell Lungen_US
dc.subjectCardenolidesen_US
dc.subjectCell Line, Tumoren_US
dc.subjectCell Proliferationen_US
dc.subjectCell Survivalen_US
dc.subjectDNA Fragmentationen_US
dc.subjectDoxorubicinen_US
dc.subjectEpidemiologic Studiesen_US
dc.subjectFibroblastsen_US
dc.subjectG2 Phase Cell Cycle Checkpointsen_US
dc.subjectHumansen_US
dc.subjectLeukocytes, Mononuclearen_US
dc.subjectLung Neoplasmsen_US
dc.subjectMitochondrial Membranesen_US
dc.subjectMitosisen_US
dc.subjectReactive Oxygen Speciesen_US
dc.titleAcovenoside A Induces Mitotic Catastrophe Followed by Apoptosis in Non-Small-Cell Lung Cancer Cellsen_US
dc.typeArticleen_US
dcterms.isReferencedBySiegel, R., Naishadham, D., Jemal, A., (2013) Ca-Cancer J. Clin., 63, pp. 11-30; Herbst, R.S., Heymach, J.V., Lippman, S.M., (2008) N. Engl. J. Med., 359, pp. 1367-1380; Reck, M., Popat, S., Reinmuth, N., De Ruysscher, D., Kerr, K.M., Peters, S., (2014) Ann. Oncol., 25, pp. 27-39; Webb, J.D., Simon, M.C., (2010) Cell Cycle, 9, pp. 4098-4105; Newman, R.A., Yang, P., Pawlus, A.D., Block, K.I., (2008) Mol. Interventions, 8, pp. 36-49; Prassas, I., Diamandis, E.P., (2008) Nat. Rev. Drug Discovery, 7, pp. 926-935; Diederich, M., Muller, F., Cerella, C., (2017) Biochem. Pharmacol., 125, pp. 1-11; Kepp, O., Menger, L., Vacchelli, E., Adjemian, S., Martins, I., Ma, Y., Sukkurwala, A.Q., Kroemer, G., (2012) Oncoimmunology, 1, pp. 1640-1642; Haux, J., (1999) Med. Hypotheses, 53, pp. 543-548; Haux, J., Klepp, O., Spigset, O., Tretli, S., (2001) BMC Cancer, 1, p. 11; Saeed, M.E., Meyer, M., Hussein, A., Efferth, T., (2016) J. Ethnopharmacol., 186, pp. 209-223; Slingerland, M., Cerella, C., Guchelaar, H.J., Diederich, M., Gelderblom, H., (2013) Invest. New Drugs, 31, pp. 1087-1094; El Sayed, A.M., Ezzat, S.M., Sabry, O.M., (2016) Nat. Prod. Res., 30, pp. 1-6; Ezzat, S.M., El Gaafary, M., El Sayed, A.M., Sabry, O.M., Ali, Z.Y., Hafner, S., Schmiech, M., Simmet, T., (2016) J. Pharmacol. Exp. Ther., 358, pp. 262-270; Malumbres, M., Barbacid, M., (2009) Nat. Rev. Cancer, 9, pp. 153-166; Lapenna, S., Giordano, A., (2009) Nat. Rev. Drug Discovery, 8, pp. 547-566; Rhind, N., Russell, P., (2012) Cold Spring Harb. Perspect. Biol., 4; Fourest-Lieuvin, A., Peris, L., Gache, V., Garcia-Saez, I., Juillan-Binard, C., Lantez, V., Job, D., (2006) Mol. Biol. Cell, 17, pp. 1041-1050; Vitale, I., Galluzzi, L., Castedo, M., Kroemer, G., (2011) Nat. Rev. Mol. Cell Biol., 12, pp. 385-392; Castedo, M., Perfettini, J.L., Roumier, T., Andreau, K., Medema, R., Kroemer, G., (2004) Oncogene, 23, pp. 2825-2837; Ricci, J.E., Gottlieb, R.A., Green, D.R., (2003) J. Cell Biol., 160, pp. 65-75; Trachootham, D., Alexandre, J., Huang, P., (2009) Nat. Rev. Drug Discovery, 8, pp. 579-591; Circu, M.L., Aw, T.Y., (2010) Free Radical Biol. Med., 48, pp. 749-762; Li, X., Fang, P., Mai, J., Choi, E.T., Wang, H., Yang, X.F., (2013) J. Hematol. Oncol., 6, p. 19; Fink, S.L., Cookson, B.T., (2005) Infect. Immun., 73, pp. 1907-1916; Blanco, R., Iwakawa, R., Tang, M., Kohno, T., Angulo, B., Pio, R., Montuenga, L.M., Sanchez-Cespedes, M., (2009) Hum. Mutat., 30, pp. 1199-1206; Berglind, H., Pawitan, Y., Kato, S., Ishioka, C., Soussi, T., (2008) Cancer Biol. Ther., 7, pp. 699-708; Greve, G., Schiffmann, I., Pfeifer, D., Pantic, M., Sch�ler, J., L�bbert, M., (2015) BMC Cancer, 15, p. 947; Hui, L., Zheng, Y., Yan, Y., Bargonetti, J., Foster, D.A., (2006) Oncogene, 25, pp. 7305-7310; Loos, C., Syrovets, T., Musyanovych, A., Mail�nder, V., Landfester, K., Simmet, T., (2014) Biomaterials, 35, pp. 1944-1953; Morad, S.A., Schmid, M., B�chele, B., Siehl, H.U., El Gafaary, M., Lunov, O., Syrovets, T., Simmet, T., (2013) Mol. Pharmacol., 83, pp. 531-541; Morad, S.A., Schmidt, C., B�chele, B., Schneider, B., Wenzler, M., Syrovets, T., Simmet, T., (2011) J. Nat. Prod., 74, pp. 1731-1736; Syrovets, T., Gschwend, J.E., B�chele, B., Laumonnier, Y., Zugmaier, W., Genze, F., Simmet, T., (2005) J. Biol. Chem., 280, pp. 6170-6180; Nicoletti, I., Migliorati, G., Pagliacci, M.C., Grignani, F., Riccardi, C., (1991) J. Immunol. Methods, 139, pp. 271-279; El Gaafary, M., B�chele, B., Syrovets, T., Agnolet, S., Schneider, B., Schmidt, C.Q., Simmet, T., (2015) J. Pharmacol. Exp. Ther., 352, pp. 33-42
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description: