Recent Updates in Pharmacological Properties of Chitooligosaccharides

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorMarmouzi I.
dc.contributor.authorEzzat, Shahira M
dc.contributor.authorSalama M.M.
dc.contributor.authorMerghany R.M.
dc.contributor.authorAttar A.M.
dc.contributor.authorEl-Desoky A.M.
dc.contributor.authorMohamed S.O.
dc.contributor.otherUniversity Mohammed v in Rabat
dc.contributor.otherFacult� de M�dicine et Pharmacie
dc.contributor.otherLaboratoire de Pharmacologie et Toxicologie
dc.contributor.other�quipe de Pharmacocin�tique
dc.contributor.otherRabat
dc.contributor.otherMorocco; Pharmacognosy Department
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherCairo University
dc.contributor.otherKasr El-Ainy Street
dc.contributor.otherCairo
dc.contributor.other11562
dc.contributor.otherEgypt; Department of Pharmacognosy
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherOctober University for Modern Sciences and Arts (MSA)
dc.contributor.other6th October12611
dc.contributor.otherEgypt; Department of Pharmacognosy and Medicinal Plants
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherBritish University in Egypt
dc.contributor.otherCairo
dc.contributor.other11837
dc.contributor.otherEgypt; Department of Pharmacognosy
dc.contributor.otherNational Research Centre
dc.contributor.otherGiza
dc.contributor.otherEgypt; Faculty of Science and Techniques
dc.contributor.otherHassan II University of Casablanca
dc.contributor.otherMohammedia
dc.contributor.otherMorocco; Department of Molecular Biology
dc.contributor.otherGenetic Engineering and Biotechnology Research Institute (GEBRI)
dc.contributor.otherUniversity of Sadat City (USC)
dc.contributor.otherSadat City
dc.contributor.otherEgypt; Natural Wellness Scientific Office
dc.contributor.otherKuala Lumpur
dc.contributor.otherMalaysia
dc.date.accessioned2020-01-09T20:40:47Z
dc.date.available2020-01-09T20:40:47Z
dc.date.issued2019
dc.descriptionScopus
dc.descriptionMSA Google Scholar
dc.description.abstractChemical structures derived from marine foods are highly diverse and pharmacologically promising. In particular, chitooligosaccharides (COS) present a safe pharmacokinetic profile and a great source of new bioactive polymers. This review describes the antioxidant, anti-inflammatory, and antidiabetic properties of COS from recent publications. Thus, COS constitute an effective agent against oxidative stress, cellular damage, and inflammatory pathogenesis. The mechanisms of action and targeted therapeutic pathways of COS are summarized and discussed. COS may act as antioxidants via their radical scavenging activity and by decreasing oxidative stress markers. The mechanism of COS antidiabetic effect is characterized by an acceleration of pancreatic islets proliferation, an increase in insulin secretion and sensitivity, a reduction of postprandial glucose, and an improvement of glucose uptake. COS upregulate the GLUT2 and inhibit digestive enzyme and glucose transporters. Furthermore, they resulted in reduction of gluconeogenesis and promotion of glucose conversion. On the other hand, the COS decrease inflammatory mediators, suppress the activation of NF-B, increase the phosphorylation of kinase, and stimulate the proliferation of lymphocytes. Overall, this review brings evidence from experimental data about protective effect of COS. � 2019 Ilias Marmouzi et al.en_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=21100230018&tip=sid&clean=0
dc.identifier.doihttps://doi.org/10.1155/2019/4568039
dc.identifier.doiPubMed ID 31781615
dc.identifier.issn23146133
dc.identifier.otherhttps://doi.org/10.1155/2019/4568039
dc.identifier.otherPubMed ID 31781615
dc.identifier.urihttps://t.ly/2dw29
dc.language.isoEnglishen_US
dc.publisherHindawi Limiteden_US
dc.relation.ispartofseriesBioMed Research International
dc.relation.ispartofseries2019
dc.subjectOctober University for Modern Sciences and Arts
dc.subjectجامعة أكتوبر للعلوم الحديثة والآداب
dc.subjectUniversity of Modern Sciences and Arts
dc.subjectMSA University
dc.subjectchitooligosaccharideen_US
dc.subjectoligosaccharideen_US
dc.subjectunclassified drugen_US
dc.subjectantidiabetic activityen_US
dc.subjectantiinflammatory activityen_US
dc.subjectantioxidant activityen_US
dc.subjectdrug activityen_US
dc.subjecthumanen_US
dc.subjectnonhumanen_US
dc.subjectReviewen_US
dc.titleRecent Updates in Pharmacological Properties of Chitooligosaccharidesen_US
dc.typeReviewen_US
dcterms.isReferencedByMourya, V.K., Inamdar, N.N., Choudhari, Y.M., Chitooligosaccharides: Synthesis, characterization and applications (2011) Polymer Science Series A, 53 (7), pp. 583-612; Aam, B.B., Heggset, E.B., Norberg, A.L., S�rlie, M., Varum, K.M., Eijsink, V.G.H., Production of chitooligosaccharides and their potential applications in medicine (2010) Marine Drugs, 8 (5), pp. 1482-1517; Muanprasat, C., Wongkrasant, P., Satitsri, S., Activation of AMPK by chitosan oligosaccharide in intestinal epithelial cells: Mechanism of action and potential applications in intestinal disorders (2015) Biochemical Pharmacology, 96 (3), pp. 225-236; Zou, P., Yang, X., Wang, J., Advances in characterisation and biological activities of chitosan and chitosan oligosaccharides (2016) Food Chemistry, 190, pp. 1174-1181; Lodhi, G., Kim, Y.-S., Hwang, J.-W., Chitooligosaccharide and its derivatives: Preparation and biological applications (2014) BioMed Research International, 2014, 13p; Kim, S., Rajapakse, N., Enzymatic production and biological activities of chitosan oligosaccharides (COS): A review (2005) Carbohydrate Polymers, 62 (4), pp. 357-368; Alves, N.M., Mano, J.F., Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications (2008) International Journal of Biological Macromolecules, 43 (5), pp. 401-414; Je, J.-Y., Park, P.-J., Kim, S.-K., Free radical scavenging properties of hetero-chitooligosaccharides using an ESR spectroscopy (2004) Food and Chemical Toxicology, 42 (3), pp. 381-387; Hamer, S.N., Cord-Landwehr, S., Biarn�s, X., Enzymatic production of defined chitosan oligomers with a specific pattern of acetylation using a combination of chitin oligosaccharide deacetylases (2015) Scientific Reports, 5 (1), p. 8716; Eaton, P., Fernandes, J.C., Pereira, E., Pintado, M.E., Xavier Malcata, F., Atomic force microscopy study of the antibacterial effects of chitosans on Escherichia coli and Staphylococcus aureus (2008) Ultramicroscopy, 108 (10), pp. 1128-1134; Park, P.-J., Je, J.-Y., Kim, S.-K., Free radical scavenging activity of chitooligosaccharides by electron spin resonance spectrometry (2003) Journal of Agricultural and Food Chemistry, 51 (16), pp. 4624-4627; Huang, R., Mendis, E., Kim, S.-K., Factors affecting the free radical scavenging behavior of chitosan sulfate (2005) International Journal of Biological Macromolecules, 36 (1-2), pp. 120-127; Yang, Y., Shu, R., Shao, J., Xu, G., Gu, X., Radical scavenging activity of chitooligosaccharide with different molecular weights (2006) European Food Research and Technology, 222 (1-2), pp. 36-40; Mendis, E., Kim, M.-M., Rajapakse, N., Kim, S.-K., An in vitro cellular analysis of the radical scavenging efficacy of chitooligosaccharides (2007) Life Sciences, 80 (23), pp. 2118-2127; Lee, S.J., Kim, E.K., Hwang, J.W., Oh, H.J., Park, P.J., Kim, C.G., Antioxidative effects of sulfated chitooligosaccharides on oxidative injury (2009) Journal of Chitin and Chitosan, 14 (4), pp. 192-196; Fernandes, J.C., Eaton, P., Nascimento, H., Antioxidant activity of chitooligosaccharides upon two biological systems: Erythrocytes and bacteriophages (2010) Carbohydrate Polymers, 79 (4), pp. 1101-1106; Ngo, D.-H., Qian, Z.-J., Ngo, D.-N., Vo, T.-S., Wijesekara, I., Kim, S.-K., Gallyl chitooligosaccharides inhibit intracellular free radical-mediated oxidation (2011) Food Chemistry, 128 (4), pp. 974-981; Lu, X., Guo, H., Zhang, Y., Protective effects of sulfated chitooligosaccharides against hydrogen peroxide-induced damage in MIN6 cells (2012) International Journal of Biological Macromolecules, 50 (1), pp. 50-58; Chen, S.-K., Hsu, C.-H., Tsai, M.-L., Chen, R.-H., Drummen, G., Inhibition of oxidative stress by low-molecular-weight polysaccharides with various functional groups in skin fibroblasts (2013) International Journal of Molecular Sciences, 14 (10), pp. 19399-19415; Laokuldilok, T., Potivas, T., Kanha, N., Physicochemical, antioxidant, and antimicrobial properties of chitooligosaccharides produced using three different enzyme treatments (2017) Food Bioscience, 18, pp. 28-33; Vo, T.-S., Ngo, D.-H., Ta, Q.V., Wijesekara, I., Kong, C.-S., Kim, S.-K., Protective effect of chitin oligosaccharides against lipopolysaccharide-induced inflammatory response in BV-2 microglia (2012) Cellular Immunology, 277 (1-2), pp. 14-21; Dai, X., Chang, P., Zhu, Q., Chitosan oligosaccharides protect rat primary hippocampal neurons from oligomeric ?-amyloid 1-42-induced neurotoxicity (2013) Neuroscience Letters, 554, pp. 64-69; Hao, C., Gao, L., Zhang, Y., Acetylated chitosan oligosaccharides act as antagonists against glutamate-induced PC12 cell death via Bcl-2/Bax signal pathway (2015) Marine Drugs, 13 (3), pp. 1267-1289; Li, K., Xing, R., Liu, S., Separation of chito-oligomers with several degrees of polymerization and study of their antioxidant activity (2012) Carbohydrate Polymers, 88 (3), pp. 896-903; Luo, Z., Dong, X., Ke, Q., Duan, Q., Shen, L., Chitooligosaccharides inhibit ethanol-induced oxidative stress via activation of Nrf2 and reduction of MAPK phosphorylation (2014) Oncology Reports, 32 (5), pp. 2215-2222; Manivasagan, P., Bharathiraja, S., Bui, N.Q., Lim, I.G., Oh, J., Paclitaxel-loaded chitosan oligosaccharide-stabilized gold nanoparticles as novel agents for drug delivery and photoacoustic imaging of cancer cells (2016) International Journal of Pharmaceutics, 511 (1), pp. 367-379; Ngo, D.-N., Kim, M.-M., Kim, S.-K., Chitin oligosaccharides inhibit oxidative stress in live cells (2008) Carbohydrate Polymers, 74 (2), pp. 228-234; Ngo, D.-N., Lee, S.-H., Kim, M.-M., Kim, S.-K., Production of chitin oligosaccharides with different molecular weights and their antioxidant effect in RAW 264.7 cells (2009) Journal of Functional Foods, 1 (2), pp. 188-198; Ngo, D.-H., Qian, Z.-J., Vo, T.-S., Ryu, B., Ngo, D.-N., Kim, S.-K., Antioxidant activity of gallate-chitooligosaccharides in mouse macrophage RAW264.7 cells (2011) Carbohydrate Polymers, 84 (4), pp. 1282-1288; Nidheesh, T., Salim, C., Rajini, P.S., Suresh, P.V., Antioxidant and neuroprotective potential of chitooligomers in Caenorhabditis elegans exposed to monocrotophos (2016) Carbohydrate Polymers, 135, pp. 138-144; Oh, S.-H., Vo, T.-S., Ngo, D.-H., Kim, S.-Y., Ngo, D.-N., Kim, S.-K., Prevention of H2O2-induced oxidative stress in murine microglial BV-2 cells by chitin-oligomers (2016) Process Biochemistry, 51 (12), pp. 2170-2175; Salgaonkar, N., Prakash, D., Nawani, N.N., Kapadnis, B.P., Comparative studies on ability of N-acetylated chitooligosaccharides to scavenge reactive oxygen species and protect DNA from oxidative damage (2015) Indian Journal of Biotechnology, 14, pp. 186-192; Shukla, S., Jadaun, A., Arora, V., Sinha, R.K., Biyani, N., Jain, V.K., In vitro toxicity assessment of chitosan oligosaccharide coated iron oxide nanoparticles (2015) Toxicology Reports, 2, pp. 27-39; Sun, T., Yao, Q., Zhou, D., Mao, F., Antioxidant activity of N-carboxymethyl chitosan oligosaccharides (2008) Bioorganic and Medicinal Chemistry Letters, 18 (21), pp. 5774-5776; Wei, P., Ma, P., Xu, Q.-S., Chitosan oligosaccharides suppress production of nitric oxide in lipopolysaccharideinduced N9 murine microglial cells in vitro (2012) Glycoconjugate Journal, 29 (5-6), pp. 285-295; Yao, H.-T., Luo, M.-N., Li, C.-C., Chitosan oligosaccharides reduce acetaminophen-induced hepatotoxicity by suppressing CYP-mediated bioactivation (2015) Journal of Functional Foods, 12, pp. 262-270; Zhang, C.-M., Yu, S.-H., Zhang, L.-S., Zhao, Z.-Y., Dong, L.-L., Effects of several acetylated chitooligosaccharides on antioxidation, antiglycation and NO generation in erythrocyte (2014) Bioorganic and Medicinal Chemistry Letters, 24 (16), pp. 4053-4057; Trinh, M.D.L., Ngo, D.-H., Tran, D.-K., Prevention of H2O2-induced oxidative stress in Chang liver cells by 4-hydroxybenzyl-chitooligomers (2014) Carbohydrate Polymers, 103, pp. 502-509; Qu, D., Han, J., Investigation of the antioxidant activity of chitooligosaccharides on mice with high-fat diet (2016) Revista Brasileira de Zootecnia, 45 (11), pp. 661-666; Xie, C., Wu, X., Long, C., Chitosan oligosaccharide affects antioxidant defense capacity and placental amino acids transport of sows (2016) BMC Veterinary Research, 12 (1), p. 243; Jiang, Z., Liu, G., Yang, Y., N-Acetyl chitooligosaccharides attenuate amyloid ?-induced damage in animal and cell models of Alzheimer's disease (2019) Process Biochemistry, 84, pp. 161-171; Yu, C., Chitosan oligosaccharide inhibits LPS-induced apoptosis of vascular endothelial cells through the BKCa channel and the p38 signaling pathway (2012) International Journal of Molecular Medicine, 30 (1), pp. 157-164; Dou, J., Xu, Q., Tan, C., Effects of chitosan oligosaccharides on neutrophils from glycogen-induced peritonitis mice model (2009) Carbohydrate Polymers, 75 (1), pp. 119-124; Fang, I.-M., Yang, C.-M., Yang, C.-H., Chitosan oligosaccharides prevented retinal ischemia and reperfusion injury via reduced oxidative stress and inflammation in rats (2015) Experimental Eye Research, 130, pp. 38-50; Jia, S., Lu, Z., Gao, Z., Chitosan oligosaccharides alleviate cognitive deficits in an amyloid-?1-42-induced rat model of Alzheimer's disease (2016) International Journal of Biological Macromolecules, 83, pp. 416-425; Niu, J., Lin, H.-Z., Jiang, S.-G., Comparison of effect of chitin, chitosan, chitosan oligosaccharide and N-acetyl-dglucosamine on growth performance, antioxidant defenses and oxidative stress status of Penaeus monodon (2013) Aquaculture, 372-375, pp. 1-8; Qu, Y., Xu, J., Zhou, H., Dong, R., Kang, M., Zhao, J., Chitin oligosaccharide (COS) reduces antibiotics dose and prevents antibiotics-caused side effects in adolescent idiopathic scoliosis (AIS) patients with spinal fusion surgery (2017) Marine Drugs, 15 (3), p. 70; Wan, J., Jiang, F., Xu, Q., New insights into the role of chitosan oligosaccharide in enhancing growth performance, antioxidant capacity, immunity and intestinal development of weaned pigs (2017) RSC Advances, 7 (16), pp. 9669-9679; Wang, S.-L., Liou, J.-Y., Liang, T.-W., Liu, K.-C., Conversion of squid pen by using Serratia sp. TKU020 fermentation for the production of enzymes, antioxidants, and N-acetyl chitooligosaccharides (2009) Process Biochemistry, 44 (8), pp. 854-861; Yao, H.-T., Luo, M.-N., Hung, L.-B., Effects of chitosan oligosaccharides on drug-metabolizing enzymes in rat liver and kidneys (2012) Food and Chemical Toxicology, 50 (5), pp. 1171-1177; Yoon, H.J., Moon, M.E., Park, H.S., Effects of chitosan oligosaccharide (COS) on the glycerol-induced acute renal failure in vitro and in vivo (2008) Food and Chemical Toxicology, 46 (2), pp. 710-716; Xie, C., Wu, X., Guo, X., Maternal chitosan oligosaccharide supplementation affecting expression of circadian clock genes, and possible association with hepatic cholesterol accumulation in suckling piglets (2015) Biological Rhythm Research, 47 (2), pp. 253-265; Chung, M.J., Park, J.K., Park, Y.I., Anti-inflammatory effects of low-molecular weight chitosan oligosaccharides in IgE-antigen complex-stimulated RBL-2H3 cells and asthma model mice (2012) International Immunopharmacology, 12 (2), pp. 453-459; Dang, Y., Li, S., Wang, W., The effects of chitosan oligosaccharide on the activation of murine spleen CD11c+ dendritic cells via Toll-like receptor 4 (2011) Carbohydrate Polymers, 83 (3), pp. 1075-1081; Deters, A., Petereit, F., Schmidgall, J., Hensel, A., NAcetyl-D-glucosamine oligosaccharides induce mucin secretion from colonic tissue and induce differentiation of human keratinocytes (2008) Journal of Pharmacy and Pharmacology, 60 (2), pp. 197-204; Hyung, J.-H., Ahn, C.-B., Il Kim, B., Kim, K., Je, J.-Y., Involvement of Nrf2-mediated heme oxygenase-1 expression in anti-inflammatory action of chitosan oligosaccharides through MAPK activation in murine macrophages (2016) European Journal of Pharmacology, 793, pp. 43-48; Kim, J.-H., Kim, Y.-S., Hwang, J.-W., Sulfated chitosan oligosaccharides suppress LPS-induced NO production via JNK and NF-?B inactivation (2014) Molecules, 19 (11), pp. 18232-18247; Kunanusornchai, W., Witoonpanich, B., Tawonsawatruk, T., Pichyangkura, R., Chatsudthipong, V., Muanprasat, C., Chitosan oligosaccharide suppresses synovial inflammation via AMPK activation: An in vitro and in vivo study (2016) Pharmacological Research, 113, pp. 458-467; Li, X., Zhou, C., Chen, X., Wang, J., Tian, J., Effects of five chitosan oligosaccharides on nuclear factor-kappa B signaling pathway (2012) Journal of Wuhan University of Technology-Mater Sci Ed, 27 (2), pp. 276-279; Li, Y., Liu, H., Xu, Q.-S., Du, Y.-G., Xu, J., Chitosan oligosaccharides block LPS-induced O-GlcNAcylation of NF-?B and endothelial inflammatory response (2014) Carbohydrate Polymers, 99, pp. 568-578; Lin, Y.-S., Wu, M.-F., Takamori, Y., Okamoto, Y., Minami, S., In vivomodulatory effects of chitooligosaccharide nanoparticles on mouse serum cytokines and splenocytes (2013) Journal of Experimental Nanoscience, 9 (8), pp. 860-870; Liu, H.-T., Li, W.-M., Huang, P., Chitosan oligosaccharides inhibit TNF-?-induced VCAM-1 and ICAM-1 expression in human umbilical vein endothelial cells by blocking p38 and ERK1/2 signaling pathways (2010) Carbohydrate Polymers, 81 (1), pp. 49-56; Qiao, Y., Ruan, Y., Xiong, C., Chitosan oligosaccharides suppressant LPS binding to TLR4/MD-2 receptor complex (2010) Carbohydrate Polymers, 82 (2), pp. 405-411; Vo, T.-S., Ngo, D.-H., Bach, L.G., Ngo, D.-N., Kim, S.-K., The free radical scavenging and anti-inflammatory activities of gallate-chitooligosaccharides in human lung epithelial A549 cells (2017) Process Biochemistry, 54, pp. 188-194; Xu, Q., Wang, W., Yang, W., Du, Y., Song, L., Chitosan oligosaccharide inhibits EGF-induced cell growth possibly through blockade of epidermal growth factor receptor/mitogen-activated protein kinase pathway (2017) International Journal of Biological Macromolecules, 98, pp. 502-505; Xu, Q., Wang, W., Qu, C., Chitosan oligosaccharides inhibit epithelial cell migration through blockade of N-acetylglucosaminyltransferase v and branched GlcNAc structure (2017) Carbohydrate Polymers, 170, pp. 241-246; Yin, Y.-L., Tang, Z.R., Sun, Z.H., Effect of galactomannan-oligosaccharides or chitosan supplementation on cytoimmunity and humoral immunity in early-weaned piglets (2008) Asian-Australasian Journal of Animal Sciences, 21 (5), pp. 723-731; Yoon, H.J., Moon, M.E., Park, H.S., Im, S.Y., Kim, Y.H., Chitosan oligosaccharide (COS) inhibits LPS-induced inflammatory effects in RAW 264.7 macrophage cells (2007) Biochemical and Biophysical Research Communications, 358 (3), pp. 954-959; Yousef, M., Pichyangkura, R., Soodvilai, S., Chatsudthipong, V., Muanprasat, C., Chitosan oligosaccharide as potential therapy of inflammatory bowel disease: Therapeutic efficacy and possible mechanisms of action (2012) Pharmacological Research, 66 (1), pp. 66-79; Zhang, P., Liu, W., Peng, Y., Han, B., Yang, Y., Toll like receptor 4 (TLR4) mediates the stimulating activities of chitosan oligosaccharide on macrophages (2014) International Immunopharmacology, 23 (1), pp. 254-261; Zhang, C., Yu, L., Zhou, Y., Zhao, Q., Liu, S.-Q., Chitosan oligosaccharides inhibit IL-1?-induced chondrocyte apoptosis via the P38 MAPK signaling pathway (2016) Glycoconjugate Journal, 33 (5), pp. 735-744; Yang, Y., Xing, R., Liu, S., Immunostimulatory effects of Chitooligosaccharides on RAW 264.7 mouse macrophages via regulation of the MAPK and PI3K/Akt signaling pathways (2019) Marine Drugs, 17 (1), p. 36; Santos-Moriano, P., Fernandez-Arrojo, L., Mengibar, M., Enzymatic production of fully deacetylated chitooligosaccharides and their neuroprotective and anti-inflammatory properties (2018) Biocatalysis and Biotransformation, 36 (1), pp. 57-67; Huang, R., Rajapakse, N., Kim, S.-K., Structural factors affecting radical scavenging activity of chitooligosaccharides (COS) and its derivatives (2006) Carbohydrate Polymers, 63 (1), pp. 122-129; Choi, E.H., Yang, H.P., Chun, H.S., Chitooligosaccharide ameliorates diet-induced obesity in mice and affects adipose gene expression involved in adipogenesis and inflammation (2012) Nutrition Research, 32 (3), pp. 218-228; Qiao, Y., Bai, X.-F., Du, Y.-G., Chitosan oligosaccharides protect mice from LPS challenge by attenuation of inflammation and oxidative stress (2011) International Immunopharmacology, 11 (1), pp. 121-127; Pangestuti, R., Bak, S.-S., Kim, S.-K., Attenuation of proinflammatory mediators in LPS-stimulated BV2 microglia by chitooligosaccharides via the MAPK signaling pathway (2011) International Journal of Biological Macromolecules, 49 (4), pp. 599-606; Liu, H.-T., Huang, P., Ma, P., Liu, Q.-S., Yu, C., Du, Y.-G., Chitosan oligosaccharides suppress LPS-induced IL-8 expression in human umbilical vein endothelial cells through blockade of p38 and Akt protein kinases (2011) Acta Pharmacologica Sinica, 32 (4), pp. 478-486; Moon, H.E., Islam, M.N., Ahn, B.R., Protein tyrosine phosphatase 1B and ?-glucosidase inhibitory phlorotannins from edible Brown Algae, Ecklonia stoloniferaandEisenia bicyclis (2011) Bioscience, Biotechnology, and Biochemistry, 75 (8), pp. 1472-1480; Qin, C., Zhang, Y., Liu, W., Xu, L., Yang, Y., Zhou, Z., Effects of chito-oligosaccharides supplementation on growth performance, intestinal cytokine expression, autochthonous gut bacteria and disease resistance in hybrid tilapia Oreochromis niloticus \ � Oreochromis aureus _ (2014) Fish and Shellfish Immunology, 40 (1), pp. 267-274; Yang, J.W., Tian, G., Chen, D.W., Involvement of PKA signalling in anti-inflammatory effects of chitosan oligosaccharides in IPEC-J2 porcine epithelial cells (2017) Journal of Animal Physiology and Animal Nutrition, 102 (1), pp. 252-259; Liu, B., Liu, W.-S., Han, B.-Q., Sun, Y.-Y., Antidiabetic effects of chitooligosaccharides on pancreatic islet cells in streptozotocin-induced diabetic rats (2007) World Journal of Gastroenterology, 13 (5), p. 725; Ju, C., Yue, W., Yang, Z., Antidiabetic effect and mechanism of chitooligosaccharides (2010) Biological and Pharmaceutical Bulletin, 33 (9), pp. 1511-1516; Lee, Y., Hirose, H., Ohneda, M., Johnson, J.H., McGarry, J.D., Unger, R.H., Beta-cell lipotoxicity in the pathogenesis of non-insulin-dependent diabetes mellitus of obese rats: Impairment in adipocyte-beta-cell relationships (1994) Proceedings of the National Academy of Sciences, 91 (23), pp. 10878-10882; Poitout, V., Robertson, R.P., Minireview: Secondary Cell failure in type 2 diabetes-A convergence of glucotoxicity and lipotoxicity (2002) Endocrinology, 143 (2), pp. 339-342; Donath, M.Y., St�rling, J., Maedler, K., Mandrup-Poulsen, T., Inflammatory mediators and isletCell failure: A link between type 1 and type 2 diabetes (2003) Journal of Molecular Medicine, 81 (8), pp. 455-470; Leahy, J.L., Bonner-Weir, S., Weir, G.C., Cell dysfunction induced by chronic hyperglycemia: Current ideas on mechanism of impaired glucose-induced insulin secretion (1992) Diabetes Care, 15 (3), pp. 442-455; Yki-J�rvinen, H., Glucose toxicity (1992) Endocrine Reviews, 13 (3), pp. 415-431; Weir, G.C., Laybutt, D.R., Kaneto, H., Bonner-Weir, S., Sharma, A., Beta-cell adaptation and decompensation during the progression of diabetes (2001) Diabetes, 50 (1), pp. S154-S159; Fukudome, D., Matsuda, M., Kawasaki, T., Ago, Y., Matsuda, T., The radical scavenger edaravone counteracts diabetes in multiple low-dose streptozotocin-treated mice (2008) European Journal of Pharmacology, 583 (1), pp. 164-169; Takasu, N., Komiya, I., Asawa, T., Nagasawa, Y., Yamada, T., Streptozocin-and alloxan-induced H2O2 generation and DNA fragmentation in pancreatic islets. H2O2 as mediator for DNA fragmentation (1991) Diabetes, 40 (9), pp. 1141-1145; Yuan, W.-P., Liu, B., Liu, C.-H., Antioxidant activity of chito-oligosaccharides on pancreatic islet cells in streptozotocin-induced diabetes in rats (2009) World Journal of Gastroenterology, 15 (11), p. 1339; Stanely, P., Prince, M., Menon, V.P., Hypoglycaemic and other related actions of Tinospora cordifolia roots in alloxaninduced diabetic rats (2000) Journal of Ethnopharmacology, 70 (1), pp. 9-15; Srinivasan, K., Viswanad, B., Asrat, L., Kaul, C.L., Ramarao, P., Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: A model for type 2 diabetes and pharmacological screening (2005) Pharmacological Research, 52 (4), pp. 313-320; Zisman, A., Peroni, O.D., Abel, E.D., Targeted disruption of the glucose transporter 4 selectively in muscle causes insulin resistance and glucose intolerance (2000) Nature Medicine, 6 (8), pp. 924-928; Shulman, G.I., Cellular mechanisms of insulin resistance (2000) Journal of Clinical Investigation, 106 (2), pp. 171-176; Katiyar, D.M., Singh, B., Lall, A.M., Haldar, C., Evaluation of antidiabetic and hypolipidemic activity of chitooligosaccharides in alloxan-induced diabetes mellitus in mice (2011) International Journal of Pharma and Bio Sciences, 2 (1), pp. 407-416; Ha, B.G., Park, J.-E., Shon, Y.H., Stimulatory effect of balanced deep-sea water containing chitosan oligosaccharides on glucose uptake in C2C12 myotubes (2016) Marine Biotechnology, 18 (4), pp. 475-484; Yu, S.-Y., Kwon, Y.-I., Lee, C., Apostolidis, E., Kim, Y.-C., Antidiabetic effect of chitosan oligosaccharide (GO2KA1) is mediated via inhibition of intestinal alpha-glucosidase and glucose transporters and PPAR? expression (2017) BioFactors, 43 (1), pp. 90-99; Teodoro, J.S., Gomes, A.P., Varela, A.T., Duarte, F.V., Rolo, A.P., Palmeira, C.M., Hepatic and skeletal muscle mitochondrial toxicity of chitosan oligosaccharides of normal and diabetic rats (2016) Toxicology Mechanisms and Methods, 26 (9), pp. 650-657; Wang, J., Si, X., Shang, W., Zhou, Z., Strappe, P., Blanchard, C., Effect of single or combined administration of resistant starch and chitosan oligosaccharides on insulin resistance in rats fed with a high-fat diet (2017) Starch-St�rke, 69 (7-8); Wu, X., Wang, J., Shi, Y., N-Acetyl-chitobiose ameliorates metabolism dysfunction through Erk/p38 MAPK and histone H3 phosphorylation in type 2 diabetes mice (2017) Journal of Functional Foods, 28, pp. 96-105; Bahar, B., O'Doherty, J.V., Sweeney, T., A potential role of IL-6 in the chito-oligosaccharide-mediated inhibition of adipogenesis (2011) British Journal of Nutrition, 106 (8), pp. 1142-1153; Cho, E.J., Rahman, A., Kim, S.W., Chitosan oligosaccharides inhibit adipogenesis in 3T3-L1 adipocytes (2008) Journal of Microbiology and Biotechnology, 18 (1), pp. 80-87; Rahman, M.A., Kumar, S.G., Kim, S.W., Proteomic analysis for inhibitory effect of chitosan oligosaccharides on 3T3-L1 adipocyte differentiation (2008) Proteomics, 8 (3), pp. 569-581; Huang, B., Xiao, D., Tan, B., Chitosan oligosaccharide reduces intestinal inflammation that involves calciumsensing receptor (CaSR) activation in lipopolysaccharide (LPS)-Challenged piglets (2015) Journal of Agricultural and Food Chemistry, 64 (1), pp. 245-252; Jo, S.-H., Ha, K.-S., Moon, K.-S., Molecular weight dependent glucose lowering effect of low molecular weight chitosan oligosaccharide (GO2KA1) on postprandial blood glucose level in SD rats model (2013) International Journal of Molecular Sciences, 14 (7), pp. 14214-14224; Kang, N.-H., Lee, W.K., Yi, B.-R., Risk of cardiovascular disease is suppressed by dietary supplementation with protamine and chitooligosaccharide in Sprague-Dawley rats (2012) Molecular Medicine Reports, 7 (1), pp. 127-133; Katiyar, D., Singh, B., Lall, A.M., Haldar, C., Efficacy of chitooligosaccharides for the management of diabetes in alloxan induced mice: A correlative study with antihyperlipidemic and antioxidative activity (2011) European Journal of Pharmaceutical Sciences, 44 (4), pp. 534-543; Keser, O., Bilal, T., Kutay, H.C., Abas, I., Eseceli, H., Effects of chitosan oligosaccharide and/or beta-glucan supplementation to diets containing organic zinc on performance and some blood indices in broilers (2012) Pakistan Veterinary Journal, 32 (1); Kim, J.-G., Jo, S.-H., Ha, K.-S., Effect of long-term supplementation of low molecular weight chitosan oligosaccharide (GO2KA1) on fasting blood glucose and HbA1c in db/db mice model and elucidation of mechanism of action (2014) BMC Complementary and Alternative Medicine, 14 (1); Kim, J.N., Chang, I.Y., Kim, H.I., Yoon, S.P., Long-term effects of chitosan oligosaccharide in streptozotocin-induced diabetic rats (2009) Islets, 1 (2), pp. 111-116; Kumar, S.G., Rahman, M.A., Lee, S.H., Hwang, H.S., Kim, H.A., Yun, J.W., Plasma proteome analysis for anti-obesity and anti-diabetic potentials of chitosan oligosaccharides in ob/ob mice (2009) Proteomics, 9 (8), pp. 2149-2162; Rahman, M.A., Kumar, S.G., Yun, J.W., Proteome analysis in adipose tissue of ob/ob mice in response to chitosan oligosaccharides treatment (2010) Biotechnology and Bioprocess Engineering, 15 (4), pp. 559-571; Wang, D., Han, J., Yu, Y., Chitosan oligosaccharide decreases very-low-density lipoprotein triglyceride and increases high-density lipoprotein cholesterol in high-fat-dietfed rats (2011) Experimental Biology and Medicine, 236 (9), pp. 1064-1069; Xie, C., Guo, X., Long, C., Supplementation of the sow diet with chitosan oligosaccharide during late gestation and lactation affects hepatic gluconeogenesis of suckling piglets (2015) Animal Reproduction Science, 159, pp. 109-117
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description:
Loading...
Thumbnail Image
Name:
4568039.pdf
Size:
1.48 MB
Format:
Adobe Portable Document Format
Description: