Enhanced Permeation of Methotrexate via Loading into Ultra-permeable Niosomal Vesicles: Fabrication, Statistical Optimization, Ex Vivo Studies, and In Vivo Skin Deposition and Tolerability
dc.Affiliation | October University for modern sciences and Arts (MSA) | |
dc.contributor.author | Al-mahallawi A.M. | |
dc.contributor.author | Fares A.R. | |
dc.contributor.author | Abd-Elsalam W.H. | |
dc.contributor.other | Department of Pharmaceutics and Industrial Pharmacy | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | Cairo University | |
dc.contributor.other | Kasr El-Ainy Street | |
dc.contributor.other | Cairo | |
dc.contributor.other | 11562 | |
dc.contributor.other | Egypt; Department of Pharmaceutics and Industrial Pharmacy | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | October University for Modern Science and Arts (MSA) | |
dc.contributor.other | Giza | |
dc.contributor.other | Egypt | |
dc.date.accessioned | 2020-01-09T20:40:36Z | |
dc.date.available | 2020-01-09T20:40:36Z | |
dc.date.issued | 2019 | |
dc.description | Scopus | |
dc.description.abstract | The aim of this study was to incorporate methotrexate (MTX) into ultra-permeable niosomal vesicles, containing cremophor RH40 as an edge activator (EA) and polyvinyl alcohol (PVA) as a stabilizer to enhance the drug permeation. Formulae were prepared by ethanol injection method following a Box-Behnken design in order to optimize the formulation variables (EA%, stabilizer %, and sonication time). To investigate the role of both cremophor RH40 and PVA, conventional MTX niosomes and MTX niosomes containing PVA only were fabricated. Drug entrapment efficiency percent (EE%), particle size (PS) analysis, zeta potential (ZP) measurements, and transmission electron microscopy (TEM) were conducted to characterize the vesicles. Cell viability studies and ex vivo permeation experiments of the optimized formula were conducted. Lastly, in vivo skin deposition of MTX from both the optimized formula and MTX solution was performed in rats. Besides, histopathological changes in rat skin were assessed. The optimized MTX ultra-permeable niosomal formula demonstrated spherical morphology, with an EE% of 65.16% and a PS of 453.6�nm. The optimized formula showed better physical stability in comparison with that of the same composition but lacking PVA. The cell viability studies verified the superior cytotoxicity of the optimized formula, and the ex vivo permeation studies revealed its ability to improve the drug permeation. The optimized formula demonstrated a significant deposition of MTX in rat dorsal skin, and histopathological evaluation confirmed the tolerability of the optimized formula in rats upon topical application. Accordingly, ultra-permeable noisomes, as a stable nanosystem, could be promising for effective delivery of MTX. � 2019, American Association of Pharmaceutical Scientists. | en_US |
dc.description.uri | https://www.scimagojr.com/journalsearch.php?q=19374&tip=sid&clean=0 | |
dc.identifier.doi | https://doi.org/10.1208/s12249-019-1380-5 | |
dc.identifier.doi | PubMed ID 31004239 | |
dc.identifier.issn | 15309932 | |
dc.identifier.other | https://doi.org/10.1208/s12249-019-1380-5 | |
dc.identifier.other | PubMed ID 31004239 | |
dc.identifier.uri | https://t.ly/GgZEX | |
dc.language.iso | English | en_US |
dc.publisher | Springer New York LLC | en_US |
dc.relation.ispartofseries | AAPS PharmSciTech | |
dc.relation.ispartofseries | 20 | |
dc.subject | Box-Behnken design | en_US |
dc.subject | edge activator | en_US |
dc.subject | histopathology | en_US |
dc.subject | IC 50 | en_US |
dc.subject | methotrexate | en_US |
dc.subject | niosomes | en_US |
dc.subject | cremophor | en_US |
dc.subject | methotrexate | en_US |
dc.subject | niosome | en_US |
dc.subject | polyvinyl alcohol | en_US |
dc.subject | stabilizing agent | en_US |
dc.subject | antineoplastic antimetabolite | en_US |
dc.subject | liposome | en_US |
dc.subject | methotrexate | en_US |
dc.subject | animal experiment | en_US |
dc.subject | animal tissue | en_US |
dc.subject | Article | en_US |
dc.subject | cell mediated cytotoxicity | en_US |
dc.subject | cell structure | en_US |
dc.subject | cell viability | en_US |
dc.subject | controlled study | en_US |
dc.subject | cytotoxicity | en_US |
dc.subject | drug penetration | en_US |
dc.subject | drug tolerability | en_US |
dc.subject | encapsulation | en_US |
dc.subject | ex vivo study | en_US |
dc.subject | high performance liquid chromatography | en_US |
dc.subject | histopathology | en_US |
dc.subject | MCF-7 cell line | en_US |
dc.subject | nonhuman | en_US |
dc.subject | photon correlation spectroscopy | en_US |
dc.subject | priority journal | en_US |
dc.subject | rat | en_US |
dc.subject | skin | en_US |
dc.subject | skin surface | en_US |
dc.subject | transmission electron microscopy | en_US |
dc.subject | zeta potential | en_US |
dc.subject | animal | en_US |
dc.subject | cell survival | en_US |
dc.subject | drug delivery system | en_US |
dc.subject | drug effect | en_US |
dc.subject | drug formulation | en_US |
dc.subject | male | en_US |
dc.subject | particle size | en_US |
dc.subject | skin absorption | en_US |
dc.subject | topical drug administration | en_US |
dc.subject | Wistar rat | en_US |
dc.subject | Administration, Topical | en_US |
dc.subject | Animals | en_US |
dc.subject | Antimetabolites, Antineoplastic | en_US |
dc.subject | Cell Survival | en_US |
dc.subject | Drug Compounding | en_US |
dc.subject | Drug Delivery Systems | en_US |
dc.subject | Liposomes | en_US |
dc.subject | Male | en_US |
dc.subject | Methotrexate | en_US |
dc.subject | Particle Size | en_US |
dc.subject | Rats | en_US |
dc.subject | Rats, Wistar | en_US |
dc.subject | Skin Absorption | en_US |
dc.title | Enhanced Permeation of Methotrexate via Loading into Ultra-permeable Niosomal Vesicles: Fabrication, Statistical Optimization, Ex Vivo Studies, and In Vivo Skin Deposition and Tolerability | en_US |
dc.type | Article | en_US |
dcterms.isReferencedBy | Chakravarty, E.F., Michaud, K., Wolfe, F., Skin cancer, rheumatoid arthritis, and tumor necrosis factor inhibitors (2005) J Rheumatol, 32 (11), pp. 2130-2135. , COI: 1:CAS:528:DC%2BD2MXht12ltbvN; Abdelbary, G., Haider, M., In vitro characterization and growth inhibition effect of nanostructured lipid carriers for controlled delivery of methotrexate (2013) Pharm Dev Technol, 18 (5), pp. 1159-1168. , COI: 1:CAS:528:DC%2BC3sXhtVKitLvE; Chitwood, K., Etzkorn, J., Cohen, G., Topical and intralesional treatment of nonmelanoma skin cancer: efficacy and cost comparisons (2013) Dermatol Surg, 39 (9), pp. 1306-1316. , COI: 1:CAS:528:DC%2BC3sXhtlKrsb%2FI; Lotti, T.M., Dermatologic therapy issue on �new and emerging treatments in dermatology (2008) Dermatol Ther, 21 (2), p. 85; Lee, E.B., Fleischmann, R., Hall, S., Wilkinson, B., Bradley, J.D., Gruben, D., Koncz, T., van Vollenhoven, R.F., Tofacitinib versus methotrexate in rheumatoid arthritis (2014) N Engl J Med, 370 (25), pp. 2377-2386; Ko�ak, A.Y., Ko�ak, O., Aslan, F., Tekta?, M., Methotrexate toxicity presenting as cutaneous ulcerations on psoriatic plaques (2013) Cutan Ocul Toxicol, 32 (4), pp. 333-335; Dogra, S., Krishna, V., Kanwar, A., Efficacy and safety of systemic methotrexate in two fixed doses of 10 mg or 25�mg orally once weekly in adult patients with severe plaque-type psoriasis: a prospective, randomized, double-blind, dose-ranging study (2012) Clin Exp Dermatol, 37 (7), pp. 729-734. , COI: 1:STN:280:DC%2BC38fivVOguw%3D%3D; Parnami, N., Garg, T., Rath, G., Goyal, A.K., Development and characterization of nanocarriers for topical treatment of psoriasis by using combination therapy (2014) Artif Cells Nanomed Biotechnol, 42 (6), pp. 406-412. , COI: 1:CAS:528:DC%2BC2cXhvFGgsLnN; Khan, Z.A., Tripathi, R., Mishra, B., Methotrexate: a detailed review on drug delivery and clinical aspects (2012) Expert Opin Drug Deliv, 9 (2), pp. 151-169. , COI: 1:CAS:528:DC%2BC38XhtV2kt7c%3D; Lakshmi, P., Devi, G.S., Bhaskaran, S., Sacchidanand, S., Niosomal methotrexate gel in the treatment of localized psoriasis: phase I and phase II studies (2007) Indian J Dermatol Venereol Leprol, 73 (3), p. 157. , COI: 1:STN:280:DC%2BD2szksFKgsw%3D%3D; Kakkar, S., Kaur, I.P., Spanlastics�a novel nanovesicular carrier system for ocular delivery (2011) Int J Pharm, 413 (1-2), pp. 202-210. , COI: 1:CAS:528:DC%2BC3MXmvFOiu78%3D; Bragagni, M., Scozzafava, A., Mastrolorenzo, A., Supuran, C.T., Mura, P., Development and ex vivo evaluation of 5-aminolevulinic acid-loaded niosomal formulations for topical photodynamic therapy (2015) Int J Pharm, 494 (1), pp. 258-263. , COI: 1:CAS:528:DC%2BC2MXhsVaju7zL; Abdelbary, A.A., Al-Mahallawi, A.M., Abdelrahim, M.E., Ali, A.M., Preparation, optimization, and in vitro simulated inhalation delivery of carvedilol nanoparticles loaded on a coarse carrier intended for pulmonary administration (2015) Int J Nanomedicine, 10, p. 6339. , COI: 1:CAS:528:DC%2BC28XhtFalsrfL; Farrag, N.S., El-Sabagh, H.A., Al-mahallawi, A.M., Amin, A.M., AbdEl-Bary, A., Mamdouh, W., Comparative study on radiolabeling and biodistribution of core-shell silver/polymeric nanoparticles-based theranostics for tumor targeting (2017) Int J Pharm, 529 (1-2), pp. 123-133. , COI: 1:CAS:528:DC%2BC2sXhtV2qtL7E; Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., Vistica, D., Warren, J.T., Boyd, M.R., New colorimetric cytotoxicity assay for anticancer-drug screening (1990) J Natl Cancer Inst, 82 (13), pp. 1107-1112. , COI: 1:CAS:528:DyaK3cXltVylsL8%3D; Abdelbary, A.A., AbouGhaly, M.H., Design and optimization of topical methotrexate loaded niosomes for enhanced management of psoriasis: application of Box-Behnken design, in-vitro evaluation and in-vivo skin deposition study (2015) Int J Pharm, 485 (1-2), pp. 235-243. , COI: 1:CAS:528:DC%2BC2MXksVagsLw%3D; El Zaafarany, G.M., Awad, G.A., Holayel, S.M., Mortada, N.D., Role of edge activators and surface charge in developing ultradeformable vesicles with enhanced skin delivery (2010) Int J Pharm, 397 (1-2), pp. 164-172; Shen, L.-N., Zhang, Y.-T., Wang, Q., Xu, L., Feng, N.-P., Enhanced in vitro and in vivo skin deposition of apigenin delivered using ethosomes (2014) Int J Pharm, 460 (1-2), pp. 280-288. , COI: 1:CAS:528:DC%2BC3sXhvFCqurzI; Bancroft, J.D., Gamble, M., (2008) Theory and Practice of Histological Techniques, , Elsevier Health Sciences; Shamma, R.N., Elsayed, I., Transfersomal lyophilized gel of buspirone HCl: formulation, evaluation and statistical optimization (2013) J Liposome Res, 23 (3), pp. 244-254. , COI: 1:CAS:528:DC%2BC3sXhtFeqsrjN; Alvarez-Figueroa, M., Delgado-Charro, M.B., Blanco-Mendez, J., Passive and iontophoretic transdermal penetration of methotrexate (2001) Int J Pharm, 212 (1), pp. 101-107. , COI: 1:CAS:528:DC%2BD3MXovFWntA%3D%3D; Christiansen, A., Backensfeld, T., Weitschies, W., Effects of non-ionic surfactants on in vitro triglyceride digestion and their susceptibility to digestion by pancreatic enzymes (2010) Eur J Pharm Sci, 41 (2), pp. 376-382. , COI: 1:CAS:528:DC%2BC3cXhtVKhtb7F; Abdelbary, A.A., Abd-Elsalam, W.H., Al-mahallawi, A.M., Fabrication of novel ultradeformable bilosomes for enhanced ocular delivery of terconazole: in vitro characterization, ex vivo permeation and in vivo safety assessment (2016) Int J Pharm, 513 (1-2), pp. 688-696. , COI: 1:CAS:528:DC%2BC28Xhs1eisrbE; Song, X., Zhao, Y., Wu, W., Bi, Y., Cai, Z., Chen, Q., Li, Y., Hou, S., PLGA nanoparticles simultaneously loaded with vincristine sulfate and verapamil hydrochloride: systematic study of particle size and drug entrapment efficiency (2008) Int J Pharm, 350 (1), pp. 320-329. , COI: 1:CAS:528:DC%2BD1cXhtlGnurY%3D; Salama, H.A., Mahmoud, A.A., Kamel, A.O., Abdel Hady, M., Awad, G.A., Brain delivery of olanzapine by intranasal administration of transfersomal vesicles (2012) J Liposome Res, 22 (4), pp. 336-345. , COI: 1:CAS:528:DC%2BC38Xhslels7fK; Al-Mahallawi, A.M., Khowessah, O.M., Shoukri, R.A., Enhanced non-invasive trans-tympanic delivery of ciprofloxacin through encapsulation into nano-spanlastic vesicles: fabrication, in-vitro characterization, and comparative ex-vivo permeation studies (2017) Int J Pharm, 522 (1-2), pp. 157-164. , COI: 1:CAS:528:DC%2BC2sXktlKku7w%3D; Raudszus, B., Mulac, D., Langer, K., A new preparation strategy for surface modified PLA nanoparticles to enhance uptake by endothelial cells (2018) Int J Pharm, 536 (1), pp. 211-221. , COI: 1:CAS:528:DC%2BC2sXhvV2ksL3L; Zhang, Y., Zhang, K., Wu, Z., Guo, T., Ye, B., Lu, M., Zhao, J., Feng, N., Evaluation of transdermal salidroside delivery using niosomes via in vitro cellular uptake (2015) Int J Pharm, 478 (1), pp. 138-146. , COI: 1:CAS:528:DC%2BC2cXhvFWisbrE | |
dcterms.source | Scopus |