Design, synthesis and cytotoxic activity of certain novel chalcone analogous compounds
dc.Affiliation | October University for modern sciences and Arts (MSA) | |
dc.contributor.author | El-Meligie S. | |
dc.contributor.author | Taher A.T. | |
dc.contributor.author | Kamal A.M. | |
dc.contributor.author | Youssef A. | |
dc.contributor.other | Pharmaceutical Organic Chemistry Department | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | Cairo University | |
dc.contributor.other | Cairo | |
dc.contributor.other | 11561 | |
dc.contributor.other | Egypt; Pharmaceutical Organic Chemistry Department | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | October University for Modern Sciences and Arts (MSA) | |
dc.contributor.other | Giza | |
dc.contributor.other | Egypt; Pharmaceutical Organic Chemistry Department | |
dc.contributor.other | Faculty of Pharmacy and Drug Manufacturing | |
dc.contributor.other | Misr University for Science and Technology | |
dc.contributor.other | Giza | |
dc.contributor.other | Egypt | |
dc.date.accessioned | 2020-01-09T20:41:28Z | |
dc.date.available | 2020-01-09T20:41:28Z | |
dc.date.issued | 2017 | |
dc.description | Scopus | |
dc.description.abstract | A series of chalcone analogous compounds were designed and synthesized. Replacing/substituting the enone or ethylenic bridge of the parent chalcone with rigid heterocyclic moieties or substituted aromatic amines gave nineteen target compounds. Their cytotoxic activities were screened against both breast and liver cancer cells as well as breast and liver normal cells. Target compounds were also evaluated for their inhibition activity of tubulin beta polymerization. Target compound 2e, 3a, 3b, 3c, 4a-4d, 5a, 5b and 6 showed broad spectrum excellent anticancer activity against both MCF-7 and HepG2. Compound 4a showed the most TUBb inhibition activity. � 2016 Elsevier Masson SAS | en_US |
dc.description.uri | https://www.scimagojr.com/journalsearch.php?q=17464&tip=sid&clean=0 | |
dc.identifier.doi | https://doi.org/10.1016/j.ejmech.2016.09.099 | |
dc.identifier.doi | PubMed ID 27744186 | |
dc.identifier.issn | 2235234 | |
dc.identifier.other | https://doi.org/10.1016/j.ejmech.2016.09.099 | |
dc.identifier.other | PubMed ID 27744186 | |
dc.identifier.uri | https://t.ly/LXv1g | |
dc.language.iso | English | en_US |
dc.publisher | Elsevier Masson SAS | en_US |
dc.relation.ispartofseries | European Journal of Medicinal Chemistry | |
dc.relation.ispartofseries | 126 | |
dc.subject | Cancer cell lines | en_US |
dc.subject | Chalcone derivatives | en_US |
dc.subject | Cytotoxic activity | en_US |
dc.subject | Normal cell lines | en_US |
dc.subject | Replacing enone bridge | en_US |
dc.subject | Tubulin beta polymerization inhibitors | en_US |
dc.subject | 3 (4 bromophenyl) 3 [(3 chloro 4 fluorophenyl)amino] 2 hydroxy 1 (3 methoxyphenyl)propan 1 one | en_US |
dc.subject | 4 (4 bromophenyl) 6 (3 methoxyphenyl) 3,4 dihydropyrimidine 2(1h) thione | en_US |
dc.subject | 4 (4 bromophenyl) 6 (3,4,5 trimethoxyphenyl) 3,4 dihydropyrimidine 2(1h) thione | en_US |
dc.subject | 4 (4 bromophenyl) 6 (4 methoxyphenyl) 3,4 dihydropyrimidine 2(1h) thione | en_US |
dc.subject | 4 (4 chlorophenyl) 6 (3 methoxyphenyl) 3,4 dihydropyrimidine 2(1h) thione | en_US |
dc.subject | 4 (4 chlorophenyl) 6 (3,4,5 trimethoxyphenyl) 3,4 dihydropyrimidine 2(1h) thione | en_US |
dc.subject | 4 (4 flurophenyl) 6 (3,4,5 trimethoxyphenyl) 3,4 dihydropyrimidine 2(1h) thione | en_US |
dc.subject | 4 (4 mehoxyphenyl) 6 (3,4,5 trimethoxyphenyl) 3,4 dihydropyrimidine 2(1h) thione | en_US |
dc.subject | 45 (4 chlorophenyl) 3 (3 methoxyphenyl) 4,5 dihydro 1h pyrazol 4 ol | en_US |
dc.subject | 5 (4 bromophenyl) 3 (3 methoxyphenyl) 1 phenyl 4,5 dihydro 1h pyrazol 4 ol | en_US |
dc.subject | 5 (4 bromophenyl) 3 (3 methoxyphenyl) 4,5 dihydro 1h pyrazol 4 ol | en_US |
dc.subject | 5 (4 chlorophenyl) 3 (3 methoxyphenyl) 1 phenyl 4,5 dihydro 1h pyrazol 4 ol | en_US |
dc.subject | 5 (4 flurophenyl) 3 (4 methoxyphenyl) 1 phenyl 4,5 dihydro 1h pyrazol 4 ol | en_US |
dc.subject | 5 (4 methoxyphenyl) 3 (4 methoxyphenyl) 1 phenyl 4,5 dihydro 1h pyrazol 4 ol | en_US |
dc.subject | antimitotic agent | en_US |
dc.subject | beta tubulin | en_US |
dc.subject | chalcone derivative | en_US |
dc.subject | colchicine | en_US |
dc.subject | cytotoxic agent | en_US |
dc.subject | protein inhibitor | en_US |
dc.subject | unclassified drug | en_US |
dc.subject | [3 (4 bromophenyl)oxiran 2 yl](3 methoxyphenyl)methanone | en_US |
dc.subject | [3 (4 bromophenyl)thiiran 2 yl](3 methoxyphenyl)methanone | en_US |
dc.subject | [3 (4 chlorophenyl)oxiran 2 yl](3 methoxyphenyl)methanone | en_US |
dc.subject | [3 (4 chlorophenyl)thiiran 2 yl](3 methoxyphenyl)methanone | en_US |
dc.subject | [3 (4 flurophenyl)oxiran 2 yl](4 methoxyphenyl)methanone | en_US |
dc.subject | antineoplastic agent | en_US |
dc.subject | chalcone | en_US |
dc.subject | tubulin | en_US |
dc.subject | tubulin modulator | en_US |
dc.subject | antiproliferative activity | en_US |
dc.subject | Article | en_US |
dc.subject | cancer inhibition | en_US |
dc.subject | comparative study | en_US |
dc.subject | concentration response | en_US |
dc.subject | controlled study | en_US |
dc.subject | cytotoxicity | en_US |
dc.subject | drug cytotoxicity | en_US |
dc.subject | drug design | en_US |
dc.subject | drug potency | en_US |
dc.subject | drug synthesis | en_US |
dc.subject | HepG2 cell line | en_US |
dc.subject | human | en_US |
dc.subject | human cell | en_US |
dc.subject | MCF 7 cell line | en_US |
dc.subject | microtubule assembly | en_US |
dc.subject | protein polymerization | en_US |
dc.subject | breast | en_US |
dc.subject | cell proliferation | en_US |
dc.subject | chemistry | en_US |
dc.subject | cytology | en_US |
dc.subject | drug effects | en_US |
dc.subject | Hep-G2 cell line | en_US |
dc.subject | liver | en_US |
dc.subject | MCF-7 cell line | en_US |
dc.subject | synthesis | en_US |
dc.subject | Antineoplastic Agents | en_US |
dc.subject | Breast | en_US |
dc.subject | Cell Proliferation | en_US |
dc.subject | Chalcone | en_US |
dc.subject | Chemistry Techniques, Synthetic | en_US |
dc.subject | Drug Design | en_US |
dc.subject | Hep G2 Cells | en_US |
dc.subject | Humans | en_US |
dc.subject | Liver | en_US |
dc.subject | MCF-7 Cells | en_US |
dc.subject | Tubulin | en_US |
dc.subject | Tubulin Modulators | en_US |
dc.title | Design, synthesis and cytotoxic activity of certain novel chalcone analogous compounds | en_US |
dc.type | Article | en_US |
dcterms.isReferencedBy | Nepali, K., Sharma, S., Sharma, M., Bedi, P.M.S., Dhar, K.L., Rational approaches, design strategies, structure activity relationship and mechanistic insights for anticancer hybrids (2014) Eur. Med. Chem., 77, pp. 422-487; Petrelli, A., Giordano, S., From single- to multi-target drugs in cancer therapy: when a specificity becomes an advantage (2008) Curr. Med. Chem., 15, pp. 422-432; De Martino, G., Edler, M.C., La Regina, G., Coluccia, A., Barbera, M.C., Barrow, D., Nicholson, R.I., Silvestri, R., New Arylthioindoles: potent inhibitors of tubulin polymerization. 2. Structure-activity relationships and molecular modeling studies (2006) J. Med. Chem., 49, pp. 947-954; Flynn, B.L., Gill, G.S., Grobelny, D.W., Chaplin, J.H., Paul, D., Leske, A.F., Lavranos, T.C., Kremmidiotis, G., Discovery of 7-hydroxy-6-methoxy-2-methyl-3-(3,4,5-trimethoxybenzoyl)benzo[b]furan (BNC105), a tubulin polymerization inhibitor with potent antiproliferative and tumor vascular disrupting properties (2011) J. Med. Chem., 54, pp. 6014-6027; Zhang, X., Kong, Y., Zhang, J., Su, M., Zhou, Y., Zang, Y., Li, J., Lu, W., Design, synthesis and biological evaluation of colchicine derivatives as novel tubulin and histone deacetylase dual inhibitors (2015) Eur. Med. Chem., 95, pp. 127-135; Botta, M., Forli, S., Magnani, M., Manetti, F., Molecular modeling approaches to study the binding mode on tubulin of microtubule destabilizing and stabilizing agents (2009) Top. Curr. Chem., 286, pp. 279-328; Shen, Y.-N., Lin, L., Qiu, H.-Y., Zou, W.-Y., Qian, Y., Zhu, H.-L., The design, synthesis, in vitro biological evaluation and molecular modeling of novel benzenesulfonate derivatives bearing chalcone moieties as potent anti-microtubulin polymerization agents (2015) RSC Adv., 5, pp. 23767-23777; Ranjit, P.M., Abdul-Rahman, S., Kumar, K.P., Prasad, Y.R., Santhipriya, T., Manikanta, G.C.V.S., Sudeepthi, N.L., Synthesis, screening and in vitro anticancer activity of piperazine nucleus containing novel chalcones on different cell lines (2013) Int. J. Pharma. Tech., 5, pp. 284-293; Syam, S., Abdelwahab, S.I., Al-Mamary, M.A., Mohan, S., Synthesis of chalcones with anticancer activities (2012) Molecules, 17, pp. 6179-6195; Dyrager, C., Wickstr�m, M., Frid�n-Saxin, M., Friberg, A., Dahl�n, K., Wall�n, E.A.A., Gullbo, J., Luthman, K., Inhibitors and promoters of tubulin polymerization: synthesis and biological evaluation of chalcones and related dienones as potential anticancer agents (2011) Bioorg. Med. Chem., 19, pp. 2659-2665; Shan, Y., Zhang, J., Liu, J., Wang, M., Dong, Y., Development of combretastatin A-4 derivatives as anticancer agents (2011) Curr. Med. Chem., 18, pp. 523-538; Han, H., Zhao, Y., Cuthbertson, T., Hartman, R.F., Rose, S.D., Cell cycle arrest and apoptosis induction by an anticancer chalcone epoxide (2010) Arch. Pharm. Chem. Life Sci., 8, pp. 429-439. , [ref importance of pyrazole moiety] D. Pal, S. Saha, S. Singh, Importance of Pyrazole Moiety in The Field of Cancer, Int J Pharm Pharm Sci, 4 (2012) 98�104; Qian, Y., Ma, G.-Y., Yang, Y., Cheng, K., Zheng, Q.-Z., Mao, W.-J., Shi, L., Zhu, H.-L., Synthesis, molecular modeling and biological evaluation of dithiocarbamates as novel antitubulin agents (2010) Bioorg. Med. Chem., 18, pp. 4310-4316; Ducki, S., Antimitotic chalcones and related compounds as inhibitors of tubulin assembly (2009) Anti-Cancer Agents Med. Chem., 9, pp. 336-347; Ducki, S., The development of chalcones as promising anticancer agents (2007) IDrugs, 10, pp. 42-46; Rappl, C., Barbier, P., Bourgarel-Rey, V., Gre�goire, C., Gilli, R., Carre, M., Combes, S., Peyrot, V., Interaction of 4-arylcoumarin analogues of combretastatins with microtubule network of HBL100 cells and binding to tubulin (2006) Biochemistry, 45, pp. 9210-9218; Kim, D.Y., Kim, K.-H., Kim, N.D., Lee, K.Y., Han, C.K., Yoon, J.H., Moon, S.K., Seong, B.L., Design and biological evaluation of novel tubulin inhibitors as antimitotic agents using a pharmacophore binding model with tubulin (2006) J. Med. Chem., 49, pp. 5664-5670; Edwards, M.L., Stemerick, D.M., Sunkara, P.S., Chalcones: a new class of antimitotic agents (1990) J. Med. Chem., 33, pp. 1948-1954; Herman, G., Busson, S., Gorbunoff, M.J., Mauduit, P., TimasheffIMA, S.N., Rossignol, B., Colchicine analogues that bind reversibly to tubulin define microtubular requirements for newly synthesized protein secretion in rat lacrimal gland (1989) Cell Biol., 86, pp. 4515-4519; Ducki, S., Mackenzie, G., Greedy, B., Armitage, S., Dit Chabert, J.F., Bennett, E., Nettles, J., Lawrence, N.J., Combretastin-like chalcones as inhibitors of microtubule polymerization. Part 2: structure-based discovery of alpha-aryl chalcones (2009) Bioorg. Med. Chem., 17, pp. 7711-7722; Dongre, R.S., Bhat, A.R., Meshram, J.S., Anticancer activity of assorted annulated pyrimidine: a comprehensive review (2014) Am. J. Pharm. Tech. Res., 4, pp. 138-155; Joshi, V.D., Kshirsagar, M.D., Singhal, S., Synthesis and pharmacological study of some novel pyrimidines (2012) Der Pharmacia Sinica, 3, pp. 343-348; Havrylyuk, D., Roman, O., Lesyk, R., Synthetic approaches, structure activity relationship and biological applications for pharmacologically attractive pyrazole/pyrazoline�thiazolidine-based hybrids (2016) Eur. Med. Chem., 113, pp. 145-166; Kant, R., Kumar, D., Agarwal, D., Gupta, R.D., Tilak, R., Awasthi, S.K., Agarwal, A., Synthesis of newer 1,2,3-triazole linked chalcone and flavone hybrid compounds and evaluation of their antimicrobial and cytotoxic activities (2016) Eur. Med. Chem., 113, pp. 34-49; Bhattacharyya, B., Panda, D., Gupta, S., Banerjee, M., Anti-mitotic activity of colchicine and the structural basis for its interaction with tubulin (2008) Med. Res. Rev., 28, pp. 155-183; Guo, L., Yang, C., Zheng, L., Xia, W., Visible light-mediated oxidative quenching reaction to electron-rich epoxides: highly regioselective synthesis of ?-bromo(di)ketones and mechanism study (2013) Org. Biomol. Chem., 11, pp. 5787-5792; Skehan, P., Monk, A., Scudiero, D.A., Shoemaker, R.H., Paull, K.D., DTP, DCTD Tumor repository a catalog of in vitro cell lines, transplantable animal and human tumors and micro assays (1991) J. Natl. Cancer Inst., 83, pp. 757-766; Liliom, K., Lehotzky, A., Molnar, A., Ovadi, J., Characterization of tubulin-alkaloid interactions by enzyme-linked immunosorbent assay (1995) Anal. Biochem., 228, pp. 18-26 | |
dcterms.source | Scopus |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- avatar_scholar_128.png
- Size:
- 2.73 KB
- Format:
- Portable Network Graphics
- Description: