Detecting Asteroids and Comets using Machine Learning and Deep Learning

dc.contributor.authorKhalil Ibrahim, Mohamed
dc.contributor.authorSaid, M.
dc.contributor.authorM. El-Sedfy, S.
dc.contributor.authorKhaled, M.
dc.contributor.authorIbrahim, A.
dc.contributor.authorAbdellah, N. N. Khaled
dc.date.accessioned2023-04-04T15:02:23Z
dc.date.available2023-04-04T15:02:23Z
dc.date.issued2023
dc.description.abstractAsteroids and comets are potentially hazardous objects that may make close approaches and enter into Earth's orbit. Detecting and tracking asteroids and comets is a global challenge. Machine learning and deep learning are powerful tools that can be used to observe such hazardous objects early to protect our planet from any future impact. In this paper, we attempt to present a concise review on using machine learning and deep learning in tracking asteroids and comets.en_US
dc.description.sponsorshipMSA Universityen_US
dc.identifier.citationFaculty of Engineeringen_US
dc.identifier.urihttp://repository.msa.edu.eg/xmlui/handle/123456789/5507
dc.language.isoenen_US
dc.publisherOctober university for modern sciences and Arts MSAen_US
dc.relation.ispartofseriesFaculty of Engineering;
dc.subjectAsteroidsen_US
dc.subjectCometsen_US
dc.subjectMachine Learningen_US
dc.subjectDeep learningen_US
dc.subjectMSA Universityen_US
dc.subjectOctober University of Modern Sciences And Artsen_US
dc.titleDetecting Asteroids and Comets using Machine Learning and Deep Learningen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Detecting Asteroids and Comets using Machine Learning and Deep Learning.pdf
Size:
481.47 KB
Format:
Adobe Portable Document Format
Description:
faculty of engineering journal volum 2 2023 issue 2

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: