Tamoxifen citrate/Coenzyme Q10 as smart nanocarriers Bitherapy for Breast Cancer: Cytotoxicity, genotoxicity, and antioxidant activity

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorEl-Leithy E.S.
dc.contributor.authorHassan S.A.
dc.contributor.authorAbdel-Rashid R.S.
dc.contributor.otherDepartment of Pharmaceutics and Industrial Pharmacy
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherHelwan University
dc.contributor.otherCairo
dc.contributor.otherEgypt; Faculty of Pharmacy
dc.contributor.otherDepartment of Pharmaceutics and Industrial Pharmacy
dc.contributor.otherMSA University
dc.contributor.otherCairo
dc.contributor.otherEgypt; Therapeutic Chemistry Dept
dc.contributor.otherNational Research Center
dc.contributor.otherCairo
dc.contributor.otherEgypt
dc.date.accessioned2020-01-09T20:40:37Z
dc.date.available2020-01-09T20:40:37Z
dc.date.issued2019
dc.descriptionScopus
dc.descriptionMSA Google Scholar
dc.description.abstractNanotechnology-based bitherapy has recently emerged as an effective strategy to overcome biomedical barriers against successful anticancer therapy. The study aimed to evaluate lipid nanocarriers loaded with tamoxifen citrate/coenzyme Q10 (TC/CoQ10) as bitherapy for selective targeting of breast cancer. Based on a previous study, four formulations of lipid nanocarriers were selected for in-vitro cell viability estimation using both MCF-7 and normal WISH cell lines. Oxidative status, cytopathological changes, and genetoxicity were also investigated. The results showed 100% mortality for tested cells without selectivity even at very low concentration for free drugs. On the other hand lipid nanocarriers revealed an increase in % cell viability for normal WISH cell line reaching 100% at 0.25 ?g/ml. The lipid nanocarrier formulated from stearic acid and lecithin showed LC 50 on MCF-7 cell line (1.6 ?g/ml) compared to (4.8 ?g/ml) on WISH cell line. The cell death pathway for unformulated bitherapy depended on necrosis rather than apoptosis. The Malondialdehyde concentration was decreased, while Glutathione level increased to near normal values in both MCF-7 and WISH cells. The results demonstrated a promising synergistic and selective action of TC/CoQ10 bitherapy on breast cancer cells when administered in lipid nanocarriers delivery system. � 2019 Elsevier B.V.en_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=22204&tip=sid&clean=0
dc.identifier.doihttps://doi.org/10.1016/j.jddst.2019.02.010
dc.identifier.doiPubMed ID :
dc.identifier.issn17732247
dc.identifier.otherhttps://doi.org/10.1016/j.jddst.2019.02.010
dc.identifier.otherPubMed ID :
dc.identifier.urihttps://t.ly/LXZw0
dc.language.isoEnglishen_US
dc.publisherEditions de Santeen_US
dc.relation.ispartofseriesJournal of Drug Delivery Science and Technology
dc.relation.ispartofseries51
dc.subjectAntioxidant activityen_US
dc.subjectBreast canceren_US
dc.subjectCoenzyme Q10en_US
dc.subjectCytotoxicityen_US
dc.subjectLipid nanocarriersen_US
dc.subjectTamoxifen citrateen_US
dc.subjectglutathioneen_US
dc.subjectmalonaldehydeen_US
dc.subjectnanocarrieren_US
dc.subjectphosphatidylcholineen_US
dc.subjectstearic aciden_US
dc.subjecttamoxifen citrateen_US
dc.subjectubidecarenoneen_US
dc.subjectantioxidant activityen_US
dc.subjectapoptosisen_US
dc.subjectArticleen_US
dc.subjectbitherapyen_US
dc.subjectbreast canceren_US
dc.subjectcancer cell cultureen_US
dc.subjectcell deathen_US
dc.subjectcell viabilityen_US
dc.subjectcomet assayen_US
dc.subjectcytopathologyen_US
dc.subjectdrug delivery systemen_US
dc.subjectgenotoxicityen_US
dc.subjecthumanen_US
dc.subjecthuman cellen_US
dc.subjecthuman cell cultureen_US
dc.subjectin vitro studyen_US
dc.subjectLC50en_US
dc.subjectMCF-7 cell lineen_US
dc.subjectmicroemulsionen_US
dc.subjectnanotechnologyen_US
dc.subjectparticle sizeen_US
dc.subjectultrasounden_US
dc.subjectWISH cell lineen_US
dc.subjectzeta potentialen_US
dc.titleTamoxifen citrate/Coenzyme Q10 as smart nanocarriers Bitherapy for Breast Cancer: Cytotoxicity, genotoxicity, and antioxidant activityen_US
dc.typeArticleen_US
dcterms.isReferencedByMayer, L.D., Janoff, A.S., Optimizing combination chemotherapy by controlling drug ratios (2007) Mol. Interv., 7, pp. 216-223; Day, D., Siu, L.L., Approaches to modernize the combination drug development paradigm (2016) Genome Med., 8 (1), p. 115; Glasauer, A., Chandel, N.S., Targeting antioxidants for cancer therapy (2014) Biochem. Pharmacol., 92 (1), pp. 90-101; Kalepu, S., Manthina, M., Padavala, V., Oral lipid-based drug delivery systems � an overview (2013) Acta Pharm. Sin. B, 3 (6), pp. 361-372; Mathur, V., Satrawala, Y., Rajput, M.S., Kumar, P., Shrivastava, P., Vishvkarma, A., Solid lipid nanoparticles in cancer therapy (2010) Int. J. Drug Deliv., 2 (3), pp. 192-199; Yassin, A., Albekairy, A., Alkatheri, A., Sharma, R.K., Anticancer-loaded solid lipid Nanoparticles?: high potential advancement in chemotherapy (2013) J Nanoamterials biostructures, 8 (2), pp. 905-916; Tagne, J.B., Kakumanu, S., Ortiz, D., Shea, T., Nicolosi, R.J., A nanoemulsion formulation of tamoxifen increases its efficacy in a breast cancer cell line (2008) Mol. Pharm., 5 (2), pp. 280-286; Monteagudo, E., G�ndola, Y., Gonz�lez, L., Bregni, C., Carlucci, A.M., Development, characterization, and in vitro evaluation of tamoxifen microemulsions (2012) J Drug Deliv, 2012, p. 236713; Sahana, B., Santra, K., Basu, S., Mukherjee, B., Development of biodegradable polymer based tamoxifen citrate loaded nanoparticles and effect of some manufacturing process parameters on them: a physicochemical and in-vitro evaluation (2010) Int. J. Nanomed., 5 (1), pp. 621-630; Wei, H., Cai, Q., Tian, L., Lebwohl, M., Tamoxifen reduces endogenous and UV light-induced oxidative damage to DNA, lipid and protein in vitro and in vivo (1998) Carcinogenesis, 19 (6), pp. 1013-1018; Day, B.W., Tyurin, V.A., Tyurina, Y.Y., Peroxidase-catalyzed pro- versus antioxidant effects of 4- hydroxytamoxifen: enzyme specificity and biochemical sequelae (1999) Chem. Res. Toxicol., 12 (1), pp. 28-37; Ahotupa, M., Hirsim�ki, P., P�irssinen, R., M�ntyl�, E., Alterations of drug metabolizing and antioxidant enzyme activities during tamoxifen-induced hepatocarcinogenesis in the rat (1994) Carcinogenesis, 15 (5), pp. 863-868; Shin, S.C., Choi, J.S., Li, X., Enhanced bioavailability of tamoxifen after oral administration of tamoxifen with quercetin in rats (2006) Int. J. Pharm., 313 (1-2), pp. 144-149; Cai, Q., Bensen, M., Greene, R., Kirchner, J., Tamoxifen-induced transient multifocal hepatic fatty infiltration (2000) Am. J. Gastroenterol., 95 (1), pp. 277-279; Dezentj�, V.O., Opdam, F.L., Gelderblom, H., CYP2D6 genotype- and endoxifen-guided tamoxifen dose escalation increases endoxifen serum concentrations without increasing side effects (2015) Breast Canc. Res. Treat., 153 (3), pp. 583-590; Swarnakar, N.K., Thanki, K., Jain, S., Enhanced antitumor efficacy and counterfeited cardiotoxicity of combinatorial oral therapy using Doxorubicin- and Coenzyme Q10-liquid crystalline nanoparticles in comparison with intravenous Adriamycin (2014) Nanomed. Nanotechnol. Biol. Med., 10 (6), pp. 1231-1241; Chen, S., Liu, W., Wan, J., Preparation of Coenzyme Q10 nanostructured lipid carriers for epidermal targeting with high-pressure microfluidics technique (2013) Drug Dev. Ind. Pharm., 39 (1), pp. 20-28; Linnane, A.W., Kios, M., Vitetta, L., Coenzyme Q10 - its role as a prooxidant in the formation of superoxide anion/hydrogen peroxide and the regulation of the metabolome (2007) Mitochondrion, 7; Fuchs-Tarlovsky, V., Role of antioxidants in cancer therapy (2013) Nutrition, 29 (1), pp. 15-21; Sachdanandam, P., Antiangiogenic and hypolipidemic activity of coenzyme Q10 supplementation to breast cancer patients undergoing Tamoxifen therapy (2008) Biofactors, 32 (1-4), pp. 151-159; Perumal, S.S., Shanthi, P., Sachdanandam, P., Combined efficacy of tamoxifen and coenzyme Q10 on the status of lipid peroxidation and antioxidants in DMBA induced breast cancer (2005) Mol. Cell. Biochem., 273 (1-2), pp. 151-160; Bahar, M., Khaghani, S., Pasalar, P., Exogenous coenzyme Q10 modulates MMP-2 activity in MCF-7 cell line as a breast cancer cellular model (2010) Nutr. J., 9 (1), p. 62; Huo, J., Xu, Z., Hosoe, K., Kubo, H., Miyahara, H., Dai, J., Mori, M., Higuchi, K., Coenzyme Q10 Prevents Senescence and Dysfunction Caused by Oxidative Stress in Vascular Endothelial Cells. Oxidative Medicine and Cellular Longevity (2018), p. 3181759; Sandri, G., Bonferoni, M.C., Gk�e, E.H., Chitosan-associated SLN: in vitro and ex vivo characterization of cyclosporine A loaded ophthalmic systems (2010) J. Microencapsul., 27 (8), pp. 735-746; Shivam, U., Vishnu, A.P., Jayvadan, K.P., Umesh, U., Ajay, S., Fabrication of solid lipid nanoparticles containing tamoxifen citrate and impact of process parameters on formulation (2012) Int. J. Biol. Pharm. Res., 3 (3), pp. 422-430; El-Leithy, E.S., Abdel-Rashid, R.S., Lipid nanocarriers for tamoxifen citrate/coenzyme Q10 dual delivery (2017) J. Drug Deliv. Sci. Technol., 41, pp. 239-250; El-Menshawi, B.S., Fayad, W., Mahmoud, K., Screening of natural products for therapeutic activity against solid tumors (2010) Indian J. Exp. Biol., 48 (3), pp. 258-264; Qui, X., Kim, D., Yoon, Y., Li, J., Jin, D., Teng, Y., Kim, S., Lee, K.L., Fluvastatin inhibits expression of the chemokine MDC/CCL22 induced by interferon-gamma in HaCaT cells, a human keratinocyte cellitle (2009) Br. J. Pharmacol., 157, pp. 1441-1450; Mosmann, T., Rapid colorimetric assays for cellular growth and survival?: application to proliferation and cytotoxicity assays (1983) J. Immunol. Methods, 65, pp. 55-63; Messmer, U.K., Pfeilschifter, J., New insights into the mechanism for clearance of apoptotic cells (2000) Bioessays, 22 (10), pp. 878-881; Doktorovova, S., Souto, E.B., Silva, A.M., Nanotoxicology applied to solid lipid nanoparticles and nanostructured lipid carriers - a systematic review of in vitro data (2014) Eur. J. Pharm. Biopharm., 87 (1), pp. 1-18; Oberli, M.A., Reichmuth, A.M., Dorkin, J.R., Lipid nanoparticle assisted mRNA delivery for potent cancer immunotherapy (2017) Nano Lett., 17 (3), pp. 1326-1335; Esterbauer, H., Cheeseman, K.H., Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal (1990) Methods Enzymol., 186 (100), pp. 407-421; Shafran, Y., Zurgil, N., Ravid-Hermesh, O., Sobolev, M., Afrimzon, E., Hakuk, Y., Shainberg, A., Deutsch, M., Nitric oxide is cytoprotective to breast cancer spheroids vulnerable to estrogen-induced apoptosis (2017) Oncotarget, 8 (65), pp. 108890-108911; Siddiqui, M.A., Kashyap, M.P., Kumar, V., Al-Khedhairy, A.A., Musarrat, J., Pant, A.B., Protective potential of trans-resveratrol against 4-hydroxynonenal induced damage in PC12 cells (2010) Toxicol. Vitro, 24 (6), pp. 1592-1598; Fiorini, S., Ferretti, M.E., Biondi, C., Pavan, B., Lunghi, L., Paganetto, G., Abelli, L., 17?-estradiol stimulates arachidonate release from human amnion-like WISH cells through a rapid mechanism involving a membrane receptor (2003) Endocrinology, 144 (8), pp. 3359-3367; Mahassni, S.H., Al-Reemi, R.M., Apoptosis and necrosis of human breast cancer cells by an aqueous extract of garden cress (Lepidium sativum) seeds (2013) Saudi J. Biol. Sci., 20 (2), pp. 131-139; Martinkovich, S., Shah, D., Planey, S., Arnott, J.A., Selective estrogen receptor modulators: tissue specificity and clinical utility (2014) Clin. Interv. Aging, 9, pp. 1437-1452; Abbasalipourkabir, R., Salehzadehb, A., Abdullah, R., Tamoxifen-loaded solid lipid nanoparticles-induced apoptosis in breast cancer cell lines (2016) J. Exp. Nanosci., 11 (3), pp. 161-174; Rui, X., Zhang, R.X., Li, J., Zhang, T., Amini, M.A., He, C., Lu, B., Yu Wu, X., Importance of integrating nanotechnology with pharmacology and physiology for innovative drug delivery and therapy � an illustration with firsthand examples (2018) Acta Pharmacol. Sin., 39, pp. 825-844; Sumera, A.A., Ovais, M., Khan, A., Raza, A., Docetaxel-loaded solid lipid nanoparticles: a novel drug delivery system (2017) IET Nanobiotechnol.; Bergamini, C., Moruzzi, N., Volta, F., Faccioli, L., Gerdes, J., Mondardini, M.C., Fato, R., Role of mitochondrial complex I and protective effect of CoQ10 supplementation in propofol induced cytotoxicity (2016) J. Bioenerg. Biomembr., 48 (4), pp. 413-423; Fakhar ud, D., Aman, W., Ullah, I., Qureshi, O.S., Mustapha, O., Shafique, S., Alam Zeb, A., Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors (2017) Int. J. Nanomed., 12, pp. 7291-7309; Shete, H.K., Selkar, N., Vanage, G.R., Patravale, V.B., Tamoxifen nanostructured lipid carriers: enhanced in vivo antitumor efficacy with reduced adverse drug effects (2014) Int. J. Pharm., 468 (1-2), pp. 1-14; Kummoona, R., Maky, A., Apoptotic changes of Middle East jaw lymphoma (2006) J. Craniofac. Surg., 17 (2), pp. 231-235; Girault, I., Bi�che, I., Lidereau, R., Role of estrogen receptor alpha transcriptional coregulators in tamoxifen resistance in breast cancer (2006) Maturitas, 54 (4), pp. 342-351; Kashyap, A., Jain, M., Shukla, S., Andley, M., Study of nuclear morphometry on cytology specimens of benign and malignant breast lesions: a study of 122 cases (2017) J. Cytol., 34 (1), p. 10; Kroemer, G., Dallaporta, B., Resche-Rigon, M., The mitochondrial death/life regulator in apoptosis and necrosis (1998) Annu. Rev. Physiol., 60, pp. 619-642; Sak, K., Chemotherapy and dietary phytochemical agents (2012) Chemother Res Pract, 2012, pp. 1-11; Ganji-Harsini, S., Khazaei, M., Rashidi, Z., Ghanbari, A., Thymoquinone could increase the efficacy of tamoxifen induced apoptosis in human breast cancer cells: an in vitro study (2016) Cell J, 18 (2), pp. 245-254; Kumaraguruparan, R., Subapriya, R., Kabalimoorthy, J., Nagini, S., Antioxidant profile in the circulation of patients with fibroadenoma and adenocarcinoma of the breast (2002) Clin. Biochem., 35 (4), pp. 275-279; Aponte, B., Carlos, D.J., Hern�ndez, J., Role of coenzyme q10 in breast cancer (2015) Pharm Pharmacol Int J, 3 (2), p. 261?267; Wang, J., Wang, H., Zhou, X., Physicochemical characterization, photo-stability and cytotoxicity of coenzyme Q10-loading nanostructured lipid carrier (2012) J. Nanosci. Nanotechnol., 12 (3), pp. 2136-2148; Zhang, Y.L., Zhang, Z.H., Jiang, T.Y., Waddad, A., Jing-Li, Cell uptake of paclitaxel solid lipid nanoparticles modified by cell-penetrating peptides in A549 cells (2013) Pharmazie, 68, pp. 47-53; L�pez-Alarc�n, C., Denicola, A., Evaluating the antioxidant capacity of natural products: a review on chemical and cellular-based assays (2013) Anal. Chim. Acta; Cho, C.H., Kim, E.A., Kim, J., Choi, S.Y., Yang, S.J., Cho, S.W., N-Adamantyl-4-methylthiazol-2-amine suppresses amyloid ?-induced neuronal oxidative damage in cortical neurons (2016) Free Radic. Res., 50 (6), pp. 678-690; Bergamini, C., Moruzzi, N., Volta, F., Faccioli, L., Gerdes, J., Mondardini, M.C., Fato, R., Role of mitochondrial complex I and protective effect of CoQ10 supplementation in propofol induced cytotoxicity (2016) J. Bioenerg. Biomembr., 48 (4), pp. 413-423; Duan, L., Danzer, B., Levenson, V.V., Maki, C.G., Critical roles for nitric oxide and ERK in the completion of prosurvival autophagy in 4OHTAM-treated estrogen receptor-positive breast cancer cells (2014) Cancer Lett., 353 (2), pp. 290-300
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
avatar_scholar_128.png
Size:
2.73 KB
Format:
Portable Network Graphics
Description: