Optimization of nutraceutical coenzyme Q10 nanoemulsion with improved skin permeability and anti-wrinkle efficiency

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorEl-Leithy E.S.
dc.contributor.authorMakky A.M.
dc.contributor.authorKhattab A.M.
dc.contributor.authorHussein D.G.
dc.contributor.otherDepartment of Pharmaceutics and Industrial Pharmacy
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherOctober University for Modern Sciences and Arts (MSA)
dc.contributor.otherCairo
dc.contributor.otherEgypt; Department of Pharmaceutics and Industrial Pharmacy
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherHelwan University
dc.contributor.otherAin Helwan
dc.contributor.otherCairo
dc.contributor.otherEgypt; Department of Pharmaceutics and Industrial Pharmacy
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherCairo University
dc.contributor.otherCairo
dc.contributor.otherEgypt; National Organization for Drug Control and Research
dc.contributor.otherCairo
dc.contributor.otherEgypt
dc.date.accessioned2020-01-09T20:41:00Z
dc.date.available2020-01-09T20:41:00Z
dc.date.issued2018
dc.descriptionScopus
dc.descriptionMSA Google Scholar
dc.description.abstractCoenzyme Q10 (CoQ10) is an insoluble, poorly permeable antioxidant with great biological value which acts as anti-aging and anti-wrinkle agent. To improve its permeability through topical application, the current study aimed at formulating oil/water (o/w) nanoemulsion (NE) as an efficient vehicle for delivering (CoQ10) through the skin barriers. The solubility of (CoQ10) was tested for various oils, surfactants (S), and co-surfactants (CoS). The NE region was determined by constructing pseudoternary phase diagrams. NE formulae containing 1, 2, and 3% w/w drug have been subjected to thermodynamic stability test. The formulae that passed thermodynamic stability tests were characterized by physical properties as pH, viscosity, refractive index, droplet size, zeta-potential, TEM, electroconductivity, in vitro release, and ex vivo permeation. The formula F2 containing 10% w/w isopropyl myristate (oil phase), 60% w/w of Tween 80: Transcutol HP mixture (S/CoSmix) at ratio 2:1, 30% w/w water and 2% w/w drug was evaluated for its anti-wrinkle efficiency using an animal model. The F2 formula showed 11.76 1.1 nm droplet size, 1.4260 0.0016 refractive index, 0.228 PDI, ?14.7 1.23 mv zeta potential, 7.06 0.051 pH, 199.05 0.35 cp viscosity, and the highest percentage of drug release in the selected dissolution media. About 47.21% of the drug was released in phosphate buffer 7.4 containing 5% w/v Labrasol and 5% w/v isopropyl alcohol through 24 h. It also showed the highest drug flux (Jss = 3.164 g/cm2/h), enhancement ratio (Er = 8.32), and permeability coefficient (Kp = 22.14 10?4 cm2/h). CoQ10 NE reduced the skin wrinkles and gave the skin smooth appearance. Our investigation suggests the potential use of NE as a vehicle for enhancing solubility and permeability of CoQ10 and thus improving its anti-wrinkle efficiency. 2017 Informa UK Limited, trading as Taylor & Francis Group.en_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=21190&tip=sid&clean=0
dc.identifier.doihttps://doi.org/10.1080/03639045.2017.1391836
dc.identifier.doiPubMed ID 29096550
dc.identifier.issn3639045
dc.identifier.otherhttps://doi.org/10.1080/03639045.2017.1391836
dc.identifier.otherPubMed ID 29096550
dc.identifier.urihttps://t.ly/y6MVy
dc.language.isoEnglishen_US
dc.publisherTaylor and Francis Ltd.en_US
dc.relation.ispartofseriesDrug Development and Industrial Pharmacy
dc.relation.ispartofseries44
dc.subjectanti-wrinkleen_US
dc.subjectCoenzyme Q10en_US
dc.subjectnanoemulsionen_US
dc.subjectpermeabilityen_US
dc.subjectphase diagramen_US
dc.subject2 propanolen_US
dc.subjectcremophoren_US
dc.subjectdiethylene glycol monoethyl etheren_US
dc.subjectlabrasolen_US
dc.subjectmyristic acid isopropyl esteren_US
dc.subjectnutraceuticalen_US
dc.subjectphosphate buffered salineen_US
dc.subjectpolysorbate 80en_US
dc.subjectpropylene glycolen_US
dc.subjectsorbitan laurateen_US
dc.subjectubidecarenoneen_US
dc.subjectwateren_US
dc.subjectwater oil creamen_US
dc.subjectnanoparticleen_US
dc.subjectsurfactanten_US
dc.subjectubidecarenoneen_US
dc.subjectubiquinoneen_US
dc.subjectanimal experimenten_US
dc.subjectanimal modelen_US
dc.subjectanimal tissueen_US
dc.subjectArticleen_US
dc.subjectcontrolled studyen_US
dc.subjectdrug dosage form comparisonen_US
dc.subjectdrug efficacyen_US
dc.subjectdrug penetrationen_US
dc.subjectdrug releaseen_US
dc.subjectdrug solubilityen_US
dc.subjectelectric conductivityen_US
dc.subjectex vivo studyen_US
dc.subjectfemaleen_US
dc.subjectin vitro studyen_US
dc.subjectnanoemulsionen_US
dc.subjectnanopharmaceuticsen_US
dc.subjectnonhumanen_US
dc.subjectparticle sizeen_US
dc.subjectpHen_US
dc.subjectraten_US
dc.subjectrefraction indexen_US
dc.subjectskin permeabilityen_US
dc.subjectthermodynamicsen_US
dc.subjecttransmission electron microscopyen_US
dc.subjectviscosityen_US
dc.subjectwrinkleen_US
dc.subjectzeta potentialen_US
dc.subjectanalogs and derivativesen_US
dc.subjectanimalen_US
dc.subjectchemistryen_US
dc.subjectcutaneous drug administrationen_US
dc.subjectcutaneous parametersen_US
dc.subjectdrug delivery systemen_US
dc.subjectdrug effectsen_US
dc.subjectdrug stabilityen_US
dc.subjectemulsionen_US
dc.subjectmedicinal chemistryen_US
dc.subjectphysiologyen_US
dc.subjectskin absorptionen_US
dc.subjectsolubilityen_US
dc.subjectsurface propertyen_US
dc.subjectWistar raten_US
dc.subjectAdministration, Cutaneousen_US
dc.subjectAnimalsen_US
dc.subjectChemistry, Pharmaceuticalen_US
dc.subjectDrug Delivery Systemsen_US
dc.subjectDrug Liberationen_US
dc.subjectDrug Stabilityen_US
dc.subjectEmulsionsen_US
dc.subjectFemaleen_US
dc.subjectHydrogen-Ion Concentrationen_US
dc.subjectNanoparticlesen_US
dc.subjectParticle Sizeen_US
dc.subjectRatsen_US
dc.subjectRats, Wistaren_US
dc.subjectSkin Absorptionen_US
dc.subjectSkin Agingen_US
dc.subjectSolubilityen_US
dc.subjectSurface Propertiesen_US
dc.subjectSurface-Active Agentsen_US
dc.subjectUbiquinoneen_US
dc.subjectViscosityen_US
dc.titleOptimization of nutraceutical coenzyme Q10 nanoemulsion with improved skin permeability and anti-wrinkle efficiencyen_US
dc.typeArticleen_US
dcterms.isReferencedByJain, J., Bhandari, A., Shah, D., Novel carriers for Transdermal drug delivery: a review (2010) Int J Pharm Appl Sci, 1, pp. 62-69; Iwai, I., Han, H., Hollander, L., The human skin barrier is organized as stacked bilayers of fully extended ceramides with cholesterol molecules associated with the ceramide sphingoid moiety (2012) J Invest Dermatol, 132, pp. 2215-2225; Ming, K., Xi, G.C., Dong, K.K., Investigations on skin permeation of hyaluronic acid based nanoemulsion as a transdermal carrier (2011) Carbohydr Polym, 86, pp. 837-843; Cevenini, E., Invidia, L., Lescai, F., Human models of aging and longevity (2008) Expert Opin Biol Ther, 8, pp. 1393-1405; Ruta, G., Aikaterini, L., Athanasios, T., Skin anti-aging strategies (2012) Dermatoendocrinology, 4, pp. 308-319; Montenegro, L., Sinico, C., Castangia, I., Idebenone-loaded solid lipid nanoparticles for drug delivery to the skin: in vitro evaluation (2012) Int J Pharm, 434, pp. 169-174; Abla, M.J., Banga, A.K., Formulation of tocopherol nanocarriers and in vitro delivery into human skin (2014) Int J Cosm Sci, 36, pp. 239-246; Rabe, J., Mamelak, A., McElgunn, P., Photoaging: mechanisms and repair (2006) J Am Acad Dermatol, 55, pp. 1-19; Kohl, E., Steinbauer, J., Landthaler, M., Skin ageing (2011) J Eur Acad Dermatol Venereol, 25, pp. 873-884; Wen, C.L., Tung, H.T., Preparation and characterization of liposomal coenzyme Q10 for in vivo topical application (2010) Int J Pharm, 395, pp. 78-83; Lenaz, G., Fato, R., Formiggini, G., The role of Coenzyme Q10 in mitochondrial electron transport (2007) Mitochondrion, 8, p. 33; Jana, P., Kay, S., Rainer, H.M., Influence of nanostructured lipid carriers (NLC) on the physical properties of the Cutanova Nanorepair Q10 cream and the in vivo skin hydration effect (2010) Int J Pharm, 396, pp. 166-173; Francesca, B., Elisabetta, D., Carmelo, P., Nanostructured lipid carriers loaded with CoQ10: effect on human dermal fibroblasts under normal and UVA-mediated oxidative conditions (2013) Int J Pharm, 455, pp. 348-356; Marti-Mestres, G., Mestres, J.P., Bres, J., The in-vitro percutaneous penetration of three antioxidant compounds (2007) Int J Pharm, 331, pp. 139-144; Uekaji, Y., Ikuta, N., Rimbach, G., Enhancement of oral bioavailability of functional ingredients by complexation with cyclodextrin (2017) J Drug Des Res, 4, p. 1043; Pankaj, K., Samir, M., Enhancement of transdermal drug delivery via the synergistic action of chemicals (2009) Biochim Biophys Acta, 1788, pp. 2362-2373; Chime, S.A., Kenechukwu, F.C., Attama, A.A., Nanoemulsions�advances in formulation, characterization, and applications in drug delivery (2014) Appl Nanotechnol Drug Deliv Nanotechnol Nanomater, 51, pp. 1628-1688; Mar�a, P.V., Montserrat, M., Nanocarriers for delivery of antioxidants on the skin (2015) Cosmetics, 2, pp. 342-354; Lala, R.R., Awari, N.G., Nanoemulsion-based gel formulations of COX-2 inhibitors for enhanced efficacy in inflammatory conditions (2014) Appl Nanotechnol Sci, 4, pp. 143-151; Aparna, C., Prathima, S., Patnaik, R., Enhanced transdermal permeability of telmisartan by a novel nanoemulsion gel (2015) Int J Pharm Sci, 7, pp. 335-342; Kumar, B., Jain, S.K., Prajapati, S.K., Effect of penetration enhancer DMSO on in vitro skin permeation of acyclovir transdermal microemulsion formulation (2011) Int J Drug Deliv, 3, pp. 83-94; Bhavna, D., Geeta, A., Harikumar, S.L., Enhanced transdermal permeability of piroxicam through novel nanoemulgel formulation (2014) Int J Pharm, 4, pp. 64-76; Faiyaz, S., Sanjula, B., Alka, A., Nanoemulsions as vehicles for transdermal delivery of aceclofenac (2007) AAPS PharmSciTech, 8. , Article 104; Joe, V., Sunil, A., Comparative topical absorption and antioxidant effectiveness of two forms of coenzyme Q10 after a single dose and after long-term supplementation in the skin of young and middle-aged subjects (2005) IFSCC Mag, 8, pp. 1-6; Adnan, A., Mohammad, R., Farhan, J.A., Nanoemulsion components screening and selection: a technical note (2009) AAPS PharmSciTech, 10, pp. 69-76; Ljiljana, D., Marija, P., The influence of co-surfactants and oils on the formation of pharmaceutical microemulsions based on PEG-8 Caprylic|capric glycerides (2008) Int J Pharm, 352, pp. 231-239; Nazzal, S., Smalyukh, I.I., Lavrentovich, O.D., Preparation and in-vitro characterization of a eutectic based semi-solid self-nanoemulsified drug delivery system (SNEDDS) of ubiquinone: mechanism and progress of emulsion formation (2002) Int J Pharm, 235, pp. 247-265; Reddy, M.S., Goud, P.S., Apte, S.S., Solubility enhancement of Candesartan Cilexetil by self-emulsifying drug delivery system (2012) Int J Pharm, 3, pp. 2098-2104; Jignesh, D.M., Jayvadan, K.P., Nanoemulsion-based gel formulation of aceclofenac for topical delivery (2011) Int J Pharm Pharm Sci Res, 1, pp. 6-12; Ankith, K.R., Subhashis, D.B., Niranjan, B.M., Design, Development and evaluation of novel nanoemulsion of simvastatin (2013) Int J Appl Pharm, 3, pp. 94-101; Singh, B.P., Kumar, B., Jain, S.K., Development and characterization of a nanoemulsion gel formulation for transdermal delivery of Carvedilol (2012) Int J Drug Dev Res, 4, pp. 151-161; Mahesh, B., Vasanth, K.P., Gowda, D.V., Enhanced permeability of cyclosporine from a transdermally applied nanoemulgel (2015) Pharm Sin, 6, pp. 69-79; Zhao, Y.I., Changguang, W., Albert, H.L., Self-nanoemulsifying drug delivery system (SNEDDS) for oral delivery of zedoary essential oil: formulation and bioavailability studies (2010) Int J Pharm, 383, pp. 170-177; Sripriya, V.R., Payal, A., Jun, S., Self-nanoemulsifying drug delivery systems (SNEDDS) for oral delivery of protein drugs II. In vitro transport study (2008) Int J Pharm, 362, pp. 10-15; Ritika, A., Geeta, A., Harikumar, S.L., Nanoemulsion based hydrogel for enhanced transdermal delivery of Ketoprofen (2014) Adv Pharm, pp. 456-468. , 2014; Taupitz, T., Klein, S., Can biorelevant media be simplified by using SLS and Tween 80 to replace bile compounds? (2010) Open Drug Deliv J, 4, pp. 30-37; Julia, C.S., Nuttakorn, B., Magdalena, H., Ultra-small NLC for improved dermal delivery of coenzyme Q10 (2013) Int J Pharm, 447, pp. 213-217; Abu-Elyazid, S.K., Kassem, A.A., Samy, A.M., Evaluation of skin permeation and pharmacological effects of tenoxicam nanoemulsion in topical formulations (2011) Asian J Pharm Health Sci, 1, pp. 99-105; Kumarai, K., Kundu, P.P., Studies on in vitro release of CPM from semi-interpenetrating polymer network (IPN) composed of chitosan and glutamic acid (2008) Bull Mater Sci, 31, pp. 159-167; Zhu, W., Guo, C., Yu, A., Microemulsion-based hydrogel formulation of penciclovir for topical delivery (2009) Int J Pharm, 378, pp. 152-158; Junyaprasert, V.B., Boonme, P., Songkro, S., Transdermal delivery of hydrophobic and hydrophilic local anesthetics from o/w and w/o brij97 based microemulsions (2007) J Pharm Pharm Sci, 10, pp. 288-298; Baboota, S., Shakeel, F., Kohli, K., Formulation and evaluation of once-a-day transdermal gels of diclofenac diethylamine (2006) Methods Find Exp Clin Pharmacol, 28, p. 109; Varaporn, B.J., Veerawat, T., Eliana, B.S., Q10-loaded NLC versus nanoemulsions: stability, rheology and in vitro skin permeation (2009) Int J Pharm, 377, pp. 207-214; Duraivel, S., Asma, S., Basha, S.K., Formulation and evaluation of anti-wrinkle activity of cream and nanoemulsion of moringaoleifera seed oil (2014) IOSR-JPBS, 9, pp. 58-73; Banchroft, J.D., Stevens, A., Turner, D.R., (1996) Theory and practice of histological techniques, p. 766. , 4th ed, New York: Churchil Livingstone, p; Shafiq-un-Nabi, S., Shakeel, F., Talegaonkar, S., Formulation, development and optimization using nanoemulsion technique (2007) AAPS PharmSciTech, 28, pp. 1-6; Sarfaraz, A., Sajid, A., Nawazish, A., Design and characterization of nanostructure topical gel of betamethasone dipropionate for psoriasis (2012) J Appl Pharm Sci, 2, pp. 148-158; Jaydeep, P., Garala, K., Anjali, P., Design and development of a self-nanoemulsifying drug delivery system for telmisartan for oral drug delivery (2011) Int J Pharm Invest, 1, pp. 112-118; Chen, H., Chang, X., Du, D., Microemulsion-based hydrogel formulation of ibuprofen for topical delivery (2006) Int J Pharm, 315, pp. 52-58; Chen, H., Chang, X., Weng, T., Study of microemulsion systems for transdermal delivery of triptolide (2004) J Control Release, 98, pp. 427-436; Ranjit, K.H., Kartik, C.P., Surendra, K.P., Nanoemulsions as vehicles for transdermal delivery of glycyrrhizin (2011) Braz J Pharm Sci, 47, pp. 769-778; Djordjevic, L., Primorac, M., Stupar, M., Characterization of capryl caproyl macro glycerides based microemulsion drug delivery vehicles for an amphiphilic drug (2004) Int J Pharm, 271, pp. 11-19; Archita, P., Anita, L., Self microemulsifying drug delivery system as a potential drug delivery system for protease inhibitors in the treatment of AIDS (2011) Asian J Pharm Sci, 6, pp. 226-240; Abeer, K., Soha, I., Formulation and evaluation of oxiconazole nitrate mucoadhesive nanoemulsion based gel for the treatment of fungal vaginal infection (2016) Int J Pharm Pharm Sci, 8, pp. 33-40; Ngawhirunpat, T., Worachun, N., Opanasopit, P., Cremophor RH40-PEG 400 microemulsions as transdermal drug delivery carrier for ketoprofen (2013) Pharm Dev Technol, 18, pp. 798-803; Teeranachaideekul, V., Souto, E.B., Junyaprasert, V.B., Cetyl palmitate-based NLC for topical delivery of coenzyme Q10�development, physicochemical characterization and in vitro release studies (2007) Eur J Pharm Biopharm, 67, pp. 141-148; Gowthamarajan, K., Sachin, K.S., Dissolution testing for poorly soluble drugs: a continuing perspective (2010) Dissolut Technol, 17, pp. 24-32; Yin, Z., Yan-Hong, S., Zhi-Yong, L., Solubility measurements and prediction of CoenzymeQ10 solubility in different solvent systems (2013) J Solut Chem, , 42:764�771; Rhee, Y.S., Choi, J.G., Park, E.S., Transdermal delivery of ketoprofen using microemulsions (2001) Int J Pharm, 228, pp. 161-170; Subal, C.B., Kesevan, S.K., Murugesan, R., Design and release characteristics of sustained release tablet containing metformin HCl (2008) Braz J Pharm Sci, 44, pp. 477-483; Baboota, S., Faiyaz, S., Alka, A., Design, development and evaluation of novel nanoemulsion formulations for transdermal potential of celecoxib (2007) Acta Pharm, 57, pp. 315-332; Sheela, A.Y., Sushilkumar, S.P., Formulation, in-vitro and in-vivo evaluation of nanoemulsion gel for transdermal drug delivery of nimodipine (2015) Asian J Pharm Clin Res, 8, pp. 119-124; Mura, S., Manconi, M., Valenti, D., Transcutol containing vesicles for topical delivery of minoxidil (2011) J Drug Target, 19, pp. 189-196; Panigrahi, L., Pattnaik, S., Saroj, K., The Effect of pH and organic esters penetration enhancers on skin permeation kinetics of Terbutaline Sulphate from pseudo-latex type transdermal delivery systems through mouse and human cadaver skins (2005) AAPS PharmSciTech, 6, pp. 167-173; Md-Sajid, A., Md-Sarfaraz, A., Nawazish, A., Formulation, characterization and in-vivo assessment of topical nanoemulsion of betamethasone valerate for psoriasis and dermatoses (2013) Int J Pharm, 3, pp. 186-199; Marks, R., Knight, A., Laidler, P., Atlas of skin pathology (2015) Curr Histopathol, 11, p. 9
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description: