Pharmacokinetics and bioequivalence study of rhein as the main metabolite of diacerein

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorMohammed S.A.
dc.contributor.authorElhabak M.A.
dc.contributor.authorEldardiri M.
dc.contributor.otherNational Organization of Drug Control and Research
dc.contributor.otherDokki
dc.contributor.otherEgypt; Pharmaceutics Department
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherAlahrm
dc.contributor.otherCanadian University
dc.contributor.otherGiza
dc.contributor.otherEgypt; Bioequivalence Center
dc.contributor.otherModern Science and Arts University
dc.contributor.other6th October
dc.contributor.otherEgypt
dc.date.accessioned2020-01-09T20:40:44Z
dc.date.available2020-01-09T20:40:44Z
dc.date.issued2019
dc.descriptionScopus
dc.description.abstractA simple, rapid and fully-validated liquid chromatographic method (RP - HPLC) with fluorescence detection was developed for the analysis of rhein (as the main metabolite of diacerein) in human plasma. The separation was performed using an ODS C 18 column with a mobile phase consisted of acetonitrile:methanol:phosphate buffer pH 6.8 and the flow rate was1.0 mL/min. The flourimetric detection was performed at 2 excitation wavelengths ? ex = 440 nm & 338 nm and one emission wavelength at ? em = 520 nm. The developed method was validated according to Food and Drug administration (FDA) guidelines for bioanalytical method validation. The pharmacokinetic parameters of the test and the reference were determined and the analysis of variance (ANOVA) between parameters of the two brands was calculated. The relative bioavailability was found to be 89%. This method was successfully applied for the routine bioequivalence analysis of diacerein in plasma. � 2019en_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=19400158709&tip=sid&clean=0
dc.identifier.doihttps://doi.org/10.1016/j.arabjc.2019.02.004
dc.identifier.doiPubMed ID :
dc.identifier.issn18785352
dc.identifier.otherhttps://doi.org/10.1016/j.arabjc.2019.02.004
dc.identifier.otherPubMed ID :
dc.identifier.urihttps://t.ly/j6ve8
dc.language.isoEnglishen_US
dc.publisherElsevier B.V.en_US
dc.relation.ispartofseriesArabian Journal of Chemistry
dc.subjectBioequivalenceen_US
dc.subjectDiacereinen_US
dc.subjectHPLC flourimetryen_US
dc.subjectRheinen_US
dc.subjectBiochemistryen_US
dc.subjectChromatographic analysisen_US
dc.subjectLiquid chromatographyen_US
dc.subjectMetabolitesen_US
dc.subjectPharmacokineticsen_US
dc.subjectBioequivalenceen_US
dc.subjectChromatographic methodsen_US
dc.subjectDiacereinen_US
dc.subjectFood and Drug Administrationen_US
dc.subjectHPLC flourimetryen_US
dc.subjectPharmacokinetic parametersen_US
dc.subjectRelative bioavailabilityen_US
dc.subjectRheinen_US
dc.subjectAnalysis of variance (ANOVA)en_US
dc.titlePharmacokinetics and bioequivalence study of rhein as the main metabolite of diacereinen_US
dc.typeArticleen_US
dcterms.isReferencedByBolton, S., Bon, C., (2009), 80, pp. 384-443. , Experimental design in clinical trial. Pharmaceutical Statistics Practical and Clinical Applications fifth ed. Marcel Dekker Inc., New York; Chakrabarty, U.S., Mandal, U.D., Bhaumik, U., Chatterjee, B., Ghosh, A., Bose, A., Pal, T.K., (2008) Arzneimittelforschung, 58 (8), pp. 405-409; Chow, C.S., Liu, J.P., Design and Analysis of Bioavailability and Bioequivalence Studies (1992), Marcel Dekker New York; Debord, P., Louchahi, K., Tod, M., Cournot, A., Perret, G., Petitjean, O., (1994) Eur. J. Drug Metab. Pharmacokin., 19 (1), pp. 13-19; Grahnen, A., Design of bioavailability studies (1984) Pharm. Int., 5, pp. 100-103; Guidance for Industry, Bioanlytical Method Validation (2018), U.S. Department of Health and Human Services. Food and Drug Administration, Center for Drug Evaluation and Research, CDER Rockville, Maryland; Guidance for Industry, Statistical Approaches in Establishing Bioequivalence (2001), Rockville, Maryland: U.S. Department of Health and Human Services. Food and Drug Administration, Center for Drug Evaluation and Research, CDER; (1996), ICH harmonised tripartite guideline, good clinical practice, (E6)R1 US; Jiang, J.Y., Yang, M.W., Qian, W., Lin, H., Geng, Y., Zhou, Z.Q., Xiao, D.W., (2012) J. Pharmac. Biomed. Anal., 57 (5), pp. 19-25; Layek, B., Kumar, T.S., Trivedi, R.K., Mullangi, R., Srinivas, N.R., (2008) Biomed. Chromatogr., 22, pp. 616-624; Nicolas, P., Tod, M., Padoin, C., Petitjean, O., (1998) Clin. Pharmacokin., 35, pp. 347-359; Ojha, A., Rathod, R., Padh, H., (2009) J. Chromatogr. B, 877 (11-12), pp. 1145-1148; Spencer, C.M., Wilde, M.I., Diacerein (1997) Drugs, 53 (1), pp. 98-106; Tamura, T., Ohmori, K., (2001) Jpn. J. Pharmacol., 85, pp. 101-104; Tang, W., Huang, X., Yu, Q., Qin, F., Wan, M., Wang, Y., Liang, M., (2007) Biomed. Chromatogr., 21, pp. 1186-1190; Toegel, S., Huang, W., Piana, C., Unger, F.M., Wirth, M., Goldring, M.B., (2007) BMC Mol. Biol., 8. , -2199-8-13.1471-2199; (2018), Guidance for Industry: Bioanalytical Method Validation (last accessed on 02/11/2008); Verbruggen, G., (2006) Rheumatology (Oxford), 45 (2), pp. 129-138; Westlake, W.J., Bioavailability and bioequivalence of pharmaceutical formulations (1988) Biopharmaceutical Statistics for Drug Development, pp. 329-352. , K.E. Peace Marcel Dekker New York; Yaroshenkoa, I.S., Khaimenovb, A.Y., Grigoriev, A.V., Sidorova, A.A., (2014) J. Anal. Chem., 69 (8), pp. 793-799; Yi, L., Ping, G.J., Xua, X., Lixin, D., (2006) J. Chromat., 1, pp. 50-55
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
avatar_scholar_128.png
Size:
2.73 KB
Format:
Portable Network Graphics
Description:
Loading...
Thumbnail Image
Name:
1-s2.0-S1878535219300267-main.pdf
Size:
905.45 KB
Format:
Adobe Portable Document Format
Description: