Molecular adaptations of bacterial mercuric reductase to the hypersaline Kebrit Deep in the Red Sea
dc.Affiliation | October University for modern sciences and Arts (MSA) | |
dc.contributor.author | Ramadan E. | |
dc.contributor.author | Maged M. | |
dc.contributor.author | Hosseiny A.E. | |
dc.contributor.author | Chambergo F.S. | |
dc.contributor.author | Setubal J.C. | |
dc.contributor.author | Dorry H.E. | |
dc.contributor.other | Department of Biology | |
dc.contributor.other | School of Sciences and Engineering | |
dc.contributor.other | The American University in Cairo | |
dc.contributor.other | New Cairo | |
dc.contributor.other | Egypt; Escola de Artes Ci�ncias e Humanidades | |
dc.contributor.other | Universidade de S�o Paulo | |
dc.contributor.other | S�o Paulo | |
dc.contributor.other | Brazil; Instituto de Qu�mica | |
dc.contributor.other | Universidade de S�o Paulo | |
dc.contributor.other | S�o Paulo | |
dc.contributor.other | Brazil; Faculty of Pharmacy | |
dc.contributor.other | Department of Pharmacology and Biochemistry | |
dc.contributor.other | The British University in Egypt | |
dc.contributor.other | El-Sherouk City | |
dc.contributor.other | Egypt; Faculty of Biotechnology | |
dc.contributor.other | October University for Modern Sciences and Arts | |
dc.contributor.other | Cairo | |
dc.contributor.other | Egypt | |
dc.date.accessioned | 2020-01-09T20:40:41Z | |
dc.date.available | 2020-01-09T20:40:41Z | |
dc.date.issued | 2019 | |
dc.description | Scopus | |
dc.description.abstract | The hypersaline Kebrit Deep brine pool in the Red Sea is characterized by high levels of toxic heavy metals. Here, we describe two structurally related mercuric reductases (MerAs) from this site which were expressed in Escherichia coli. Sequence similarities suggest that both genes are derived from proteobacteria, most likely the Betaproteobacteria or Gammaproteobacteria. We show that one of the enzymes (K35NH) is strongly inhibited by NaCl, while the other (K09H) is activated in a NaCl-dependent manner. We infer from this difference that the two forms might support the detoxification of mercury in bacterial microorganisms that employ the compatible solutes and salt-in strategies, respectively. Three-dimensional structure modeling shows that all amino acid substitutions unique to each type are located outside the domain responsible for formation of the active MerA homodimer, and the vast majority of these are found on the surface of the molecule. Moreover, K09H exhibits the predominance of acidic over hydrophobic side chains that is typical of halophilic salt-dependent proteins. These findings enhance our understanding of how selection pressures imposed by two environmental stressors have endowed MerA enzymes with catalytic properties that can potentially function in microorganisms that utilize distinct mechanisms for osmotic balance in hypersaline environments. � 2019 American Society for Microbiology. All Rights Reserved. | en_US |
dc.identifier.doi | https://doi.org/10.1128/AEM.01431-18 | |
dc.identifier.doi | PubMedID30504211 | |
dc.identifier.issn | 992240 | |
dc.identifier.other | https://doi.org/10.1128/AEM.01431-18 | |
dc.identifier.other | PubMedID30504211 | |
dc.identifier.uri | https://t.ly/8pOP0 | |
dc.language.iso | English | en_US |
dc.publisher | American Society for Microbiology | en_US |
dc.relation.ispartofseries | Applied and Environmental Microbiology | |
dc.relation.ispartofseries | 85 | |
dc.subject | Atlantis II Deep | en_US |
dc.subject | Kebrit Deep | en_US |
dc.subject | Mercuric reductase | en_US |
dc.subject | Red Sea brine pools | en_US |
dc.subject | Detoxification | en_US |
dc.subject | Enzymes | en_US |
dc.subject | Escherichia coli | en_US |
dc.subject | Heavy metals | en_US |
dc.subject | Amino acid substitution | en_US |
dc.subject | Atlantis ii deeps | en_US |
dc.subject | Environmental stressors | en_US |
dc.subject | Hypersaline environment | en_US |
dc.subject | Kebrit Deep | en_US |
dc.subject | Mercuric reductase | en_US |
dc.subject | Red sea | en_US |
dc.subject | Three dimensional structure modeling | en_US |
dc.subject | Sodium chloride | en_US |
dc.subject | amino acid | en_US |
dc.subject | brine | en_US |
dc.subject | coliform bacterium | en_US |
dc.subject | detoxification | en_US |
dc.subject | environmental stress | en_US |
dc.subject | enzyme | en_US |
dc.subject | enzyme activity | en_US |
dc.subject | heavy metal | en_US |
dc.subject | hypersaline environment | en_US |
dc.subject | molecular analysis | en_US |
dc.subject | protein | en_US |
dc.subject | Indian Ocean | en_US |
dc.subject | Red Sea [Indian Ocean] | en_US |
dc.subject | Bacteria (microorganisms) | en_US |
dc.subject | Betaproteobacteria | en_US |
dc.subject | Escherichia coli | en_US |
dc.subject | Gammaproteobacteria | en_US |
dc.subject | Proteobacteria | en_US |
dc.title | Molecular adaptations of bacterial mercuric reductase to the hypersaline Kebrit Deep in the Red Sea | en_US |
dc.type | Article | en_US |
dcterms.isReferencedBy | Antunes, A., Ngugi, D.K., Stingl, U., Microbiology of the Red Sea (and other) deep-sea anoxic brine lakes (2011) Environ Microbiol Rep, 3, pp. 416-433. , https://doi.org/10.1111/j.1758-2229.2011.00264.x; Backer, H., Schoell, M., New deeps with brines and metalliferous sediments in the Red Sea (1972) Nat Phys Sci, 240, pp. 153-158. , https://doi.org/10.1038/physci240153a0; Hartmann, M., Scholten, J.C., Stoffers, P., Wehner, F., Hydrographic structure of brine-filled Deeps in the Red Sea-new results from the Shaban, Kebrit, Atlantis II, and Discovery Deep (1998) Mar Geol, 144, pp. 311-330. , https://doi.org/10.1016/S0025-3227(97)00055-8; Swift, S.A., Bower, A.S., Schmitt, R.W., Vertical, horizontal, and temporal changes in temperature in the Atlantis II and Discovery hot brine pools, Red Sea (2012) Deep Sea Res, 164, pp. 118-128. , https://doi.org/10.1016/j.dsr.2012.02.006; Eder, W., Jahnke, L.L., Schmidt, M., Huber, R., Microbial diversity of the brine-seawater interface of the Kebrit Deep, Red Sea, studied via 16S rRNA gene sequences and cultivation methods (2001) Appl Environ Microbiol, 67, pp. 3077-3085. , https://doi.org/10.1128/AEM.67.7.3077-3085.2001; Eder, W., Ludwig, W., Huber, R., Novel 16S rRNA gene sequences retrieved from highly saline brine sediments of Kebrit Deep, Red Sea (1999) Arch Microbiol, 172, pp. 213-218; Freedman, Z., Zhu, C., Barkay, T., Mercury resistance and mercuric reductase activities and expression among chemotrophic thermophilic Aquificae (2012) Appl Environ Microbiol, 78, pp. 6568-6575. , https://doi.org/10.1128/AEM.01060-12; Barkay, T., Wagner, D.I., Microbial transformations of mercury: potentials, challenges, and achievements in controlling mercury toxicity in the environment (2005) Adv Appl Microbiol, 57, pp. 1-52. , https://doi.org/10.1016/S0065-2164(05)57001-1; Ledwidge, R., Hong, B., Dotsch, V., Miller, S.M., NmerA of Tn501 mercuric ion reductase: structural modulation of the pKa values of the metal binding cysteine thiols (2010) Biochemistry, 49, pp. 8988-8998. , https://doi.org/10.1021/bi100537f; Ledwidge, R., Patel, B., Dong, A., Fiedler, D., Falkowski, M., Zelikova, J., Summers, A.O., Miller, S.M., NmerA, the metal binding domain of mercuric ion reductase, removes Hg 2+ from proteins, delivers it to the catalytic core, and protects cells under glutathione-depleted conditions (2005) Biochemistry, 44, pp. 11402-11416. , https://doi.org/10.1021/bi050519d; Miller, S.M., Moore, M.J., Massey, V., Williams, C.H., Jr., Distefano, M.D., Ballou, D.P., Walsh, C.T., Evidence for the participation of Cys558 and Cys559 at the active site of mercuric reductase (1989) Biochemistry, 28, pp. 1194-1205; Moore, M.J., Walsh, C.T., Mutagenesis of the N- and C-terminal cysteine pairs of Tn501 mercuric ion reductase: consequences for bacterial detoxification of mercurials (1989) Biochemistry, 28, pp. 1183-1194. , https://doi.org/10.1021/bi00429a036; Oregaard, G., Sorensen, S.J., High diversity of bacterial mercuric reductase genes from surface and sub-surface floodplain soil (Oak Ridge, USA) (2007) ISME J, 1, pp. 453-467. , https://doi.org/10.1038/ismej.2007.56; Simbahan, J., Kurth, E., Schelert, J., Dillman, A., Moriyama, E., Jovanovich, S., Blum, P., Community analysis of a mercury hot spring supports occurrence of domain-specific forms of mercuric reductase (2005) Appl Environ Microbiol, 71, pp. 8836-8845. , https://doi.org/10.1128/AEM.71.12.8836-8845.2005; Oren, A., Microbial life at high salt concentrations: phylogenetic and metabolic diversity (2008) Saline Syst, 4, p. 2. , https://doi.org/10.1186/1746-1448-4-2; Christian, J.H., Waltho, J.A., Solute concentrations within cells of halophilic and non-halophilic bacteria (1962) Biochim Biophys Acta, 65, pp. 506-508; Eisenberg, H., Mevarech, M., Zaccai, G., Biochemical, structural, and molecular genetic aspects of halophilism (1992) Adv Protein Chem, 43, pp. 1-62; Lanyi, J.K., Salt-dependent properties of proteins from extremely halophilic bacteria (1974) Bacteriol Rev, 38, pp. 272-290; Oren, A., Heldal, M., Norland, S., Galinski, E.A., Intracellular ion and organic solute concentrations of the extremely halophilic bacterium Salinibacter ruber (2002) Extremophiles, 6, pp. 491-498. , https://doi.org/10.1007/s00792-002-0286-3; Paul, S., Bag, S.K., Das, S., Harvill, E.T., Dutta, C., Molecular signature of hypersaline adaptation: insights from genome and proteome composition of halophilic prokaryotes (2008) Genome Biol, 9, p. R70. , https://doi.org/10.1186/gb-2008-9-4-r70; Fukuchi, S., Yoshimune, K., Wakayama, M., Moriguchi, M., Nishikawa, K., Unique amino acid composition of proteins in halophilic bacteria (2003) J Mol Biol, 327, pp. 347-357; Frolow, F., Harel, M., Sussman, J.L., Mevarech, M., Shoham, M., Insights into protein adaptation to a saturated salt environment from the crystal structure of a halophilic 2Fe-2S ferredoxin (1996) Nat Struct Biol, 3, pp. 452-458; Galinski, E.A., Osmoadaptation in bacteria (1986) Adv Microb Physiol, 37. , 273-228; Roberts, M.F., Organic compatible solutes of halotolerant and halophilic microorganisms (2005) Saline Syst, 1, p. 5. , https://doi.org/10.1186/1746-1448-1-5; Sayed, A., Ghazy, M.A., Ferreira, A.J., Setubal, J.C., Chambergo, F.S., Ouf, A., Adel, M., El-Dorry, H., A novel mercuric reductase from the unique deep brine environment of Atlantis II in the Red Sea (2014) J Biol Chem, 289, pp. 1675-1687. , https://doi.org/10.1074/jbc.M113.493429; Sen, D., Van der Auwera, G.A., Rogers, L.M., Thomas, C.M., Brown, C.J., Top, E.M., Broad-host-range plasmids from agricultural soils have IncP-1 backbones with diverse accessory genes (2011) Appl Environ Microbiol, 77, pp. 7975-7983. , https://doi.org/10.1128/AEM.05439-11; Bischoff, J.L., Red Sea geothermal brine deposits: their mineralogy, chemistry, and genesis (1969), pp. 368-401. , In Degens ET, Ross DA (ed), Hot brines and recent heavy metal deposits in the Red Sea: a geochemical and geophysical account. Springer, Berlin, Germany; Scholten, J.C., Stoffers, P., Garbe-Schonberg, D., Moammar, M., Hydrothermal mineralization in the Red Sea (1999), pp. 369-395. , In Cronan DS (ed), Handbook of marine mineral deposits. CRC Press, Boca Raton, FL; Brown, N.L., Ford, S.J., Pridmore, R.D., Fritzinger, D.C., Nucleotide sequence of a gene from the Pseudomonas transposon Tn501 encoding mercuric reductase (1983) Biochemistry, 22, pp. 4089-4095; Calvert, J.W., Coetzee, W.A., Lefer, D.J., Novel insights into hydrogen sulfide-mediated cytoprotection (2010) Antioxid Redox Signal, 12, pp. 1203-1217. , https://doi.org/10.1089/ars.2009.2882; Li, L., Moore, P.K., Putative biological roles of hydrogen sulfide in health and disease: a breath of not so fresh air? (2008) Trends Pharmacol Sci, 29, pp. 84-90. , https://doi.org/10.1016/j.tips.2007.11.003; Kimura, Y., Goto, Y., Kimura, H., Hydrogen sulfide increases glutathione production and suppresses oxidative stress in mitochondria (2010) Antioxid Redox Signal, 12, pp. 1-13. , https://doi.org/10.1089/ars.2008.2282; Ooi, X.J., Tan, K.S., Reduced glutathione mediates resistance to H2S toxicity in oral streptococci (2016) Appl Environ Microbiol, 82, pp. 2078-2085. , https://doi.org/10.1128/AEM.03946-15; Deole, R., Challacombe, J., Raiford, D.W., Hoff, W.D., An extremely halophilic proteobacterium combines a highly acidic proteome with a low cytoplasmic potassium content (2013) J Biol Chem, 288, pp. 581-588. , https://doi.org/10.1074/jbc.M112.420505; Oren, H., Bioenergetic aspects of halophilism (1999) Microbiol Mol Biol Rev, 63, pp. 334-348; Kennedy, S.P., Ng, W.V., Salzberg, S.L., Hood, L., DasSarma, S., Understanding the adaptation of Halobacterium species NRC-1 to its extreme environment through computational analysis of its genome sequence (2001) Genome Res, 11, pp. 1641-1650. , https://doi.org/10.1101/gr.190201; Zhang, Y., Bond, C.S., Bailey, S., Cunningham, M.L., Fairlamb, A.H., Hunter, W.N., The crystal structure of trypanothione reductase from the human pathogen Trypanosoma cruzi at 2.3 � resolution (1996) Protein Sci, 5, pp. 52-61; Siglioccolo, A., Paiardini, A., Piscitelli, M., Pascarella, S., Structural adaptation of extreme halophilic proteins through decrease of conserved hydrophobic contact surface (2011) BMC Struct Biol, 11, p. 50. , https://doi.org/10.1186/1472-6807-11-50; McInerney, P., Adams, P., Hadi, M.Z., Error rate comparison during polymerase chain reaction by DNA polymerase (2014) Mol Biol Int, 2014, p. 287430. , https://doi.org/10.1155/2014/287430; Gille, C., Frommel, C., STRAP: editor for STRuctural Alignments of Proteins (2001) Bioinformatics, 17, pp. 377-378; Punta, M., Coggill, P.C., Eberhardt, R.Y., Mistry, J., Tate, J., Boursnell, C., Pang, N., Finn, R.D., The Pfam protein families database (2012) Nucleic Acids Res, 40, pp. D290-D301. , https://doi.org/10.1093/nar/gkr1065; Hunter, S., Jones, P., Mitchell, A., Apweiler, R., Attwood, T.K., Bateman, A., Bernard, T., Yong, S.Y., InterPro in 2011: new developments in the family and domain prediction database (2012) Nucleic Acids Res, 40, pp. D306-D312. , https://doi.org/10.1093/nar/gkr948; Fox, B., Walsh, C.T., Mercuric reductase (1982) Purification and characterization of a transposon-encoded flavoprotein containing an oxidationreduction- active disulfide. J Biol Chem, 257, pp. 2498-2503; Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs (1997) Nucleic Acids Res, 25, pp. 3389-3402; Nguyen, L.T., Schmidt, H.A., von Haeseler, A., Minh, B.Q., IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies (2015) Mol Biol Evol, 32, pp. 268-274. , https://doi.org/10.1093/molbev/msu300; Guex, N., Peitsch, M.C., SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling (1997) Electrophoresis, 18, pp. 2714-2723. , https://doi.org/10.1002/elps.1150181505; Arnold, K., Bordoli, L., Kopp, J., Schwede, T., The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling (2006) Bioinformatics, 22, pp. 195-201. , https://doi.org/10.1093/bioinformatics/bti770; Schwede, T., Kopp, J., Guex, N., Peitsch, M.C., SWISS-MODEL: an automated protein homology-modeling server (2003) Nucleic Acids Res, 31, pp. 3381-3385 | |
dcterms.source | Scopus |