Alginate coated chitosan nanogel for the controlled topical delivery of Silver sulfadiazine
dc.Affiliation | October University for modern sciences and Arts (MSA) | |
dc.contributor.author | El-Feky G.S. | |
dc.contributor.author | El-Banna S.T. | |
dc.contributor.author | El-Bahy G.S. | |
dc.contributor.author | Abdelrazek E.M. | |
dc.contributor.author | Kamal M. | |
dc.contributor.other | Pharmaceutical Technology Department | |
dc.contributor.other | National Research Center | |
dc.contributor.other | DokkiCairo | |
dc.contributor.other | Egypt; Faculty of Pharmacy | |
dc.contributor.other | October University for Modern Sciences and Arts | |
dc.contributor.other | Egypt; Spectroscopy Department | |
dc.contributor.other | Physics Division | |
dc.contributor.other | National Research Centre | |
dc.contributor.other | Dokki | |
dc.contributor.other | Giza | |
dc.contributor.other | Egypt; Physics Department | |
dc.contributor.other | Faculty of Science | |
dc.contributor.other | Mansoura University | |
dc.contributor.other | Mansoura | |
dc.contributor.other | Egypt; Physics Department | |
dc.contributor.other | Faculty of Science | |
dc.contributor.other | Taibah University | |
dc.contributor.other | Al-Ula | |
dc.contributor.other | Saudi Arabia | |
dc.date.accessioned | 2020-01-09T20:41:11Z | |
dc.date.available | 2020-01-09T20:41:11Z | |
dc.date.issued | 2017 | |
dc.description | Scopus | |
dc.description.abstract | Burn wounds environment favors the growth of micro-organisms causing delay in wound healing. The traditional treatment with antimicrobial creams offer inaccurate doses. The aim of the present study is to formulate and evaluate different silver sulfadiazine loaded nanogel formulations. A factorial design experiment was used for the identification of critical process parameters and for the optimization of the respective process conditions. The prepared drug loaded nanogels were characterized for their particle size, zeta potential, entrapment efficiency and swelling index in order to demonstrate their physicochemical properties, in addition, FTIR, TEM, SEM and in vitro release were used for characterization. The release profile of all tested nanogels showed an initial burst followed by a slow and continuous release rate. An optimum nanogel formulation was predicted by the JMP� software according to the stated prediction expressions and was composed of 0.4% sodium alginate (ALG) and 0.414% Silver sulfadiazine (SSD). The optimized formulation showed higher therapeutic efficacy in vivo when compared to market product. � 2017 Elsevier Ltd | en_US |
dc.description.uri | https://www.scimagojr.com/journalsearch.php?q=25801&tip=sid&clean=0 | |
dc.identifier.doi | https://doi.org/10.1016/j.carbpol.2017.08.104 | |
dc.identifier.doi | PubMed ID 28962758 | |
dc.identifier.issn | 1448617 | |
dc.identifier.other | https://doi.org/10.1016/j.carbpol.2017.08.104 | |
dc.identifier.other | PubMed ID 28962758 | |
dc.identifier.uri | https://t.ly/7OJ2B | |
dc.language.iso | English | en_US |
dc.publisher | Elsevier Ltd | en_US |
dc.relation.ispartofseries | Carbohydrate Polymers | |
dc.relation.ispartofseries | 177 | |
dc.subject | Chitosan | en_US |
dc.subject | Drug delivery | en_US |
dc.subject | Nanogels | en_US |
dc.subject | Silver sulfadiazine | en_US |
dc.subject | Sodium alginate | en_US |
dc.subject | Tripolyphosphate | en_US |
dc.subject | Alginate | en_US |
dc.subject | Chitin | en_US |
dc.subject | Chitosan | en_US |
dc.subject | Drug delivery | en_US |
dc.subject | Microorganisms | en_US |
dc.subject | Particle size | en_US |
dc.subject | Polyethylenes | en_US |
dc.subject | Silver | en_US |
dc.subject | Sodium | en_US |
dc.subject | Sodium alginate | en_US |
dc.subject | Critical process parameters | en_US |
dc.subject | Entrapment efficiency | en_US |
dc.subject | Nanogels | en_US |
dc.subject | Physicochemical property | en_US |
dc.subject | Process condition | en_US |
dc.subject | Silver sulfadiazines | en_US |
dc.subject | Therapeutic efficacy | en_US |
dc.subject | Tripolyphosphates | en_US |
dc.subject | Nanostructured materials | en_US |
dc.subject | alginic acid | en_US |
dc.subject | chitosan | en_US |
dc.subject | drug carrier | en_US |
dc.subject | nanoparticle | en_US |
dc.subject | sulfadiazine silver | en_US |
dc.subject | administration and dosage | en_US |
dc.subject | chemistry | en_US |
dc.subject | gel | en_US |
dc.subject | topical drug administration | en_US |
dc.subject | Administration, Topical | en_US |
dc.subject | Alginates | en_US |
dc.subject | Chitosan | en_US |
dc.subject | Drug Carriers | en_US |
dc.subject | Gels | en_US |
dc.subject | Nanoparticles | en_US |
dc.subject | Silver Sulfadiazine | en_US |
dc.title | Alginate coated chitosan nanogel for the controlled topical delivery of Silver sulfadiazine | en_US |
dc.type | Article | en_US |
dcterms.isReferencedBy | Agnihotri, S.A., Mallikarjuna, N.N., Aminabhavi, T.M., Recent advances on chitosan-based micro-and nanoparticles in drug delivery (2004) Journal of Controlled Release, 100 (1), pp. 5-28; Agrawal, Y., Petkar, K.C., Sawant, K.K., Development, evaluation and clinical studies of Acitretin loaded nanostructured lipid carriers for topical treatment of psoriasis (2010) International Journal of Pharmaceutics, 401 (1), pp. 93-102; Anitha, A., Maya, S., Deepa, N., Chennazhi, K., Nair, S., Tamura, H., Efficient water soluble O-carboxymethyl chitosan nanocarrier for the delivery of curcumin to cancer cells (2011) Carbohydrate Polymers, 83 (2), pp. 452-461; Arora, S., Gupta, S., Narang, K.R., Budhiraja, D.R., Amoxicillin loaded chitosan-alginate polyelectrolyte complex nanoparticles as mucopenetrating delivery system for H. Pylori (2011) Scientia Pharmaceutica, 79, pp. 673-694; Avasatthi, V., Pawar, H., Dora, C.P., Bansod, P., Gill, M.S., Suresh, S., A novel nanogel formulation of methotrexate for topical treatment of psoriasis: Optimization, in vitro and in vivo evaluation (2016) Pharmaceutical Development and Technology, 21 (5), pp. 554-562; Azevedo, J., Sizilio, R., Brito, M., Costa, A., Serafini, M., Ara�jo, A., Physical and chemical characterization insulin-loaded chitosan-TPP nanoparticles (2011) Journal of Thermal Analysis and Calorimetry, 106 (3), pp. 685-689; Bajpai, S., Sharma, S., Investigation of swelling/degradation behaviour of alginate beads cross-linked with Ca 2+ and Ba 2+ ions (2004) Reactive and Functional Polymers, 59 (2), pp. 129-140; Ballin, J.C., Evaluation of a new topical agent for burn therapy: Silver sulfadiazine (Silvadene) (1974) JAMA, 230 (8), pp. 1184-1185; Batheja, P., Sheihet, L., Kohn, J., Singer, A.J., Michniak-Kohn, B., Topical drug delivery by a polymeric nanosphere gel: Formulation optimization and in vitro and in vivo skin distribution studies (2011) Journal of Controlled Release, 149 (2), pp. 159-167; Bencherif, S.A., Siegwart, D.J., Srinivasan, A., Horkay, F., Hollinger, J.O., Washburn, N.R., Nanostructured hybrid hydrogels prepared by a combination of atom transfer radical polymerization and free radical polymerization (2009) Biomaterials, 30 (29), pp. 5270-5278; Berger, T., Spadaro, J., Chapin, S., Becker, R., Electrically generated silver ions: Quantitative effects on bacterial and mammalian cells (1976) Antimicrobial Agents and Chemotherapy, 9 (2), p. 357; Bodmeier, R., Oh, K.-H., Pramar, Y., Preparation and evaluation of drug-containing chitosan beads (1989) Drug Development and Industrial Pharmacy, 15 (9), pp. 1475-1494; Bolton, S., Bon, C., Pharmaceutical statistics: Practical and clinical applications (2009), CRC Press; Box, G.E., Wilson, K., On the experimental attainment of optimum conditions (1992) Breakthroughs in statistics, pp. 270-310. , Springer; Bult, A., Klasen, H.B., Structures of silver sulfonamides (1978) Journal of Pharmaceutical Sciences, 67 (2), pp. 284-287; Bult, A., Plug, C.M., Silver sulfadiazine (1984) Analytical Profiles of Drug Substances, 13, pp. 553-571; Calvo, P., Remunan-Lopez, C., Vila-Jato, J., Alonso, M., Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers (1997) Journal of Applied Polymer Science, 63 (1), pp. 125-132; Capitani, D., Crescenzi, V., De Angelis, A., Segre, A., Water in hydrogels. An NMR study of water/polymer interactions in weakly cross-linked chitosan networks (2001) Macromolecules, 34 (12), pp. 4136-4144; Coward, J.E., Carr, H.S., Rosenkranz, H.S., Silver sulfadiazine: Effect on the ultrastructure of Pseudomonas aeruginosa (1973) Antimicrobial Agents and Chemotherapy, 3 (5), pp. 621-624; Darder, M., Colilla, M., Ruiz-Hitzky, E., Biopolymer-clay nanocomposites based on chitosan intercalated in montmorillonite (2003) Chemistry of Materials, 15 (20), pp. 3774-3780; Darrabie, M.D., Kendall, W.F., Opara, E.C., Effect of alginate composition and gelling cation on microbead swelling (2006) Journal of Microencapsulation, 23 (6), pp. 613-621; Dickinson, S., Topical therapy of burns in children with SSD (1973) New York State Journal of Medicine, 73 (16), p. 2045; Felt, O., Buri, P., Gurny, R., Chitosan: A unique polysaccharide for drug delivery (1998) Drug Development and Industrial Pharmacy, 24 (11), pp. 979-993; Fox, C.L., Modak, S.M., Mechanism of SSD action on burn wound infections (1974) Antimicrobial Agents and Chemotherapy, 5 (6), pp. 582-588; Fox, C.L., Jr, Rappole, B., Stanford, W., Control of pseudomonas infection in burns by SSD (1969) Surgery, Gynecology & Obstetrics, 128 (5), pp. 1021-1026; Fuller, F.W., Parrish, M., Nance, F.C., A review of the dosimetry of 1% SSD cream in burn wound treatment (1994) Journal of Burn Care & Research, 15 (3), pp. 213-223; Gan, Q., Wang, T., Chitosan nanoparticle as protein delivery carrier�systematic examination of fabrication conditions for efficient loading and release (2007) Colloids and Surfaces B: Biointerfaces, 59 (1), pp. 24-34; Hamilton-Miller, J., Shah, S., Smith, C., Silver sulphadiazine: A comprehensive in vitro reassessment (1993) Chemotherapy, 39 (6), pp. 405-409; Hayashi, H., Iijima, M., Kataoka, K., Nagasaki, Y., pH-sensitive nanogel possessing reactive PEG tethered chains on the surface (2004) Macromolecules, 37 (14), pp. 5389-5396; Hegazy, A., Sharaf, S., El-Feky, G.S., El Shafei, A., Preparation and evaluation of the inclusion complex of silver sulfadiazine with cyclodextrin (2013) International Journal of Pharmacy and Pharmaceutical Sciences, 5 (1), pp. 461-468; Hoffmann, S., Silver sulfadiazine: An antibacterial agent for topical use in burns (1984) Scandinavian Journal of Plastic and Reconstructive Surgery, 18 (1), pp. 119-126; Jain, N.K., Progress in controlled and novel drug delivery systems (2004), CBS Publishers & Distributors; Janes, K.A., Fresneau, M.P., Marazuela, A., Fabra, A., Alonso, M.A.J., Chitosan nanoparticles as delivery systems for doxorubicin (2001) Journal of Controlled Release, 73 (2), pp. 255-267; Jodar, K.S., Balc�o, V.M., Chaud, M.V., Tubino, M., Yoshida, V.M., Oliveira, J.M., Development and characterization of a hydrogel containing silver sulfadiazine for antimicrobial topical applications (2015) Journal of Pharmaceutical Sciences, 104 (7), pp. 2241-2254; Kabanov, A.V., Vinogradov, S.V., Nanogels as pharmaceutical carriers: Finite networks of infinite capabilities (2009) Angewandte Chemie International Edition, 48 (30), pp. 5418-5429; Katas, H., Raja, M.A., Lam, K.L., Development of chitosan nanoparticles as a stable drug delivery system for protein/siRNA (2013) International Journal of Biomaterials, 2013, pp. 1-9; Khalil, S.K., El-Feky, G.S., El-Banna, S.T., Khalil, W.A., Preparation and evaluation of warfarin-?-cyclodextrin loaded chitosan nanoparticles for transdermal delivery (2012) Carbohydrate Polymers, 90 (3), pp. 1244-1253; Lee, H., Mok, H., Lee, S., Oh, Y.-K., Park, T.G., Target-specific intracellular delivery of siRNA using degradable hyaluronic acid nanogels (2007) Journal of Controlled Release, 119 (2), pp. 245-252; Li, Q., Dunn, E., Grandmaison, E., Goosen, M., Applications and properties of chitosan (1992) Journal of Bioactive and Compatible Polymers, 7 (4), pp. 370-397; Li, N., Wang, J., Yang, X., Li, L., Novel nanogels as drug delivery systems for poorly soluble anticancer drugs (2011) Colloids and Surfaces B: Biointerfaces, 83 (2), pp. 237-244; Lichtenstein, A., Margalit, R., Liposome-encapsulated SSD (SSD) for the topical treatment of infected burns: Thermodynamics of drug encapsulation and kinetics of drug release (1995) Journal of Inorganic Biochemistry, 60 (3), pp. 187-198; MacMillan, B., The control of burn wound sepsis (1981) Intensive Care Medicine, 7 (2), pp. 63-69; Mousa, H., Burn and scald injuries (2005); Narang, K., Gupta, J., Silver (I) complexes of sulfathiazole, sulfadiazine, sulfamerazine and sulfamethazine (1976) Current Science, 45 (21), pp. 744-746; Nascimento, E.G.D., Sampaio, T.B.M., Medeiros, A.C., Azevedo, E.P.D., Evaluation of chitosan gel with 1% SSD as an alternative for burn wound treatment in rats (2009) Acta Cirurgica Brasileira, 24 (6), pp. 460-465; Omidian, H., Park, K., Swelling agents and devices in oral drug delivery (2008) Journal of Drug Delivery Science and Technology, 18 (2), pp. 83-93; Paim, J., Travassos, C., Almeida, C., Bahia, L., Macinko, J., The Brazilian health system: History, advances, and challenges (2011) The Lancet, 377 (9779), pp. 1778-1797; Papadimitriou, S., Bikiaris, D., Avgoustakis, K., Karavas, E., Georgarakis, M., Chitosan nanoparticles loaded with dorzolamide and pramipexole (2008) Carbohydrate Polymers, 73 (1), pp. 44-54; Phatak Atul, A., Chaudhari Praveen, D., Development and evaluation of nanogel as a carrier for transdermal delivery of aceclofenac (2012) Asian Journal of Pharmacy and Technology, 2 (4), pp. 125-132; Pujana, M.A., P�rez-�lvarez, L., Iturbe, L.C.C., Katime, I., Biodegradable chitosan nanogels cross-linked with genipin (2013) Carbohydrate Polymers, 94 (2), pp. 836-842; Rigogliuso, S., Sabatino, M.A., Adamo, G., Grimaldi, N., Dispenza, C., Ghersi, G., Polymeric nanogels: Nano-carriers for drug delivery application (2012) Chemical Engineering, 27; Rinaudo, M., Chitin and chitosan: Properties and applications (2006) Progress in Polymer Science, 31 (7), pp. 603-632; Rosenkranz, H.S., Carr, H.S., Silver sulfadiazine: Effect on the growth and metabolism of bacteria (1972) Antimicrobial Agents and Chemotherapy, 2 (5), pp. 367-372; Sabitha, M., Rejinold, N.S., Nair, A., Lakshmanan, V.-K., Nair, S.V., Jayakumar, R., Development and evaluation of 5-fluorouracil loaded chitin nanogels for treatment of skin cancer (2013) Carbohydrate Polymers, 91 (1), pp. 48-57; Sadighian, S., Rostamizadeh, K., Hosseini-Monfared, H., Hamidi, M., Doxorubicin-conjugated core�shell magnetite nanoparticles as dual-targeting carriers for anticancer drug delivery (2014) Colloids and Surfaces B: Biointerfaces, 117, pp. 406-413; Sadighian, S., Hosseini-Monfared, H., Rostamizadeh, K., Hamidi, M., pH-Triggered magnetic-chitosan Nanogels (MCNs) for doxorubicin delivery: Physically vs. chemically cross linking approach (2015) Advanced Pharmaceutical Bulletin, 5 (1), pp. 115-120; Sandri, G., Bonferoni, M.C., D'Autilia, F., Rossi, S., Ferrari, F., Grisoli, P., Wound dressings based on SSD solid lipid nanoparticles for tissue repairing (2013) European Journal of Pharmaceutics and Biopharmaceutics, 84 (1), pp. 84-90; Sarmento, B., Ferreira, D., Jorgensen, L., Van De Weert, M., Probing insulin's secondary structure after entrapment into alginate/chitosan nanoparticles (2007) European Journal of Pharmaceutics and Biopharmaceutics, 65 (1), pp. 10-17; Sch�tz, C.A., Juillerat-Jeanneret, L., K�uper, P., Wandrey, C., Cell response to the exposure to chitosan�TPP//alginate nanogels (2011) Biomacromolecules, 12 (11), pp. 4153-4161; Shanmugasundaram, N., Sundaraseelan, J., Uma, S., Selvaraj, D., Babu, M., Design and delivery of SSD from alginate microspheres-impregnated collagen scaffold (2006) Journal of Biomedical Materials Research Part B: Applied Biomaterials, 77 (2), pp. 378-388; Szegedi, Popova, M., Yoncheva, K., Makk, J., Mih�ly, J., Shestakova, P., Silver-and sulfadiazine-loaded nanostructured silica materials as potential replacement of SSD (2014) Journal of Materials Chemistry B, 2 (37), pp. 6283-6292; Tan, Q., Liu, W., Guo, C., Zhai, G., Preparation and evaluation of quercetin-loaded lecithin-chitosan nanoparticles for topical delivery (2011) International Journal of Nanomedicine, 6 (8), pp. 1621-1630; Venkataraman, M., Nagarsenker, M., Silver sulfadiazine nanosystems for burn therapy (2013) AAPS PharmSciTech, 14 (1), pp. 254-264; Vinogradov, S.V., 16 Hydrophilic colloidal networks (micro-and nanogels) in drug delivery and diagnostics (2009) Structure and Functional Properties of Colloidal Systems, 146, p. 367; Wu, Y., Yang, W., Wang, C., Hu, J., Fu, S., Chitosan nanoparticles as a novel delivery system for ammonium glycyrrhizinate (2005) International Journal of Pharmaceutics, 295 (1), pp. 235-245 | |
dcterms.source | Scopus |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- avatar_scholar_128.png
- Size:
- 2.73 KB
- Format:
- Portable Network Graphics
- Description: