Flexible nano-sized lipid vesicles for the transdermal delivery of colchicine; in vitro/in vivo investigation

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorEl-Feky G.S.
dc.contributor.authorEl-Naa M.M.
dc.contributor.authorMahmoud A.A.
dc.contributor.otherDepartment of Pharmaceutical Technology
dc.contributor.otherPharmaceutical and Drug Industries Research Division
dc.contributor.otherNational Research Center
dc.contributor.otherDokki
dc.contributor.otherCairo
dc.contributor.otherEgypt; October University for Modern Sciences and Arts
dc.contributor.otherEgypt; Department of Pharmacology and Toxicology
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherFayoum University
dc.contributor.otherEgypt; Department of Pharmaceutics and Pharmaceutical Technology
dc.contributor.otherFaculty of Pharmaceutical Sciences and Pharmaceutical Industries
dc.contributor.otherFuture University
dc.contributor.otherCairo
dc.contributor.otherEgypt
dc.date.accessioned2020-01-09T20:40:41Z
dc.date.available2020-01-09T20:40:41Z
dc.date.issued2019
dc.descriptionScopus
dc.description.abstractColchicine (CL) is the most effective treatment of acute gout, however, it is associated with side effects in 80% of the patients at therapeutic doses, in addition, it's a water-soluble strong base (pKa ?12.8) which ionizes at physiological gastrointestinal pH resulting in low oral bioavailability of 44%. This work employed enhancing the bioavailability and reducing the side effects of CL through combining the benefits of the transdermal route together with those of elastic lipid nano-vesicles. Transfersomes (TRs) have been studied as vehicles for transdermal drug delivery, however, poor encapsulation of drugs and drug leaking of the vesicles required complexation of CL with ?-cyclodextrin (?-CD) before formulation. The composition of the designed CL-?-CD-TR was studied to balance the flexibility of the vesicles to their entrapment ability. CL-?-CD-TR were characterized for their shape, size, entrapment efficiency, elasticity, release profile, ex vivo skin permeation, pharmacological efficacy, and histopathological effect. Encapsulation efficiency of CL-?-CD complex in the vesicular formulations ranged from 42.3% to 93.8%. Particle size ranged from 70.6 nm to 138.5 nm and zeta potential ranged from 16.1 mV to 23.4 mV. The in vitro release of CL from the selected CL-?-CD-TR formulation (F3) showed a controlled, biphasic profile. Ex vivo study reported the great potential of F3 (CL-?-CD-TR) for skin permeation. In vivo experiment demonstrated that F3 (CL-?-CD-TR) possessed high biological efficacy with reduced skin irritation. � 2018 Elsevier B.V.en_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=22204&tip=sid&clean=0
dc.identifier.doihttps://doi.org/10.1016/j.jddst.2018.10.036
dc.identifier.doiPubMed ID :
dc.identifier.issn17732247
dc.identifier.otherhttps://doi.org/10.1016/j.jddst.2018.10.036
dc.identifier.otherPubMed ID :
dc.identifier.urihttps://t.ly/YZR0Y
dc.language.isoEnglishen_US
dc.publisherEditions de Santeen_US
dc.relation.ispartofseriesJournal of Drug Delivery Science and Technology
dc.relation.ispartofseries49
dc.subjectOctober University for Modern Sciences and Arts
dc.subjectUniversity for Modern Sciences and Arts
dc.subjectMSA University
dc.subjectجامعة أكتوبر للعلوم الحديثة والآداب
dc.subjectColchicineen_US
dc.subjectIn vivo studyen_US
dc.subjectLipid vesiclesen_US
dc.subjectTransdermalen_US
dc.subject?-cyclodextrinen_US
dc.subjectbeta cyclodextrinen_US
dc.subjectcolchicineen_US
dc.subjectdrug carrieren_US
dc.subjecttransfersomeen_US
dc.subjectunclassified drugen_US
dc.subjectanimal experimenten_US
dc.subjectanimal modelen_US
dc.subjectArticleen_US
dc.subjectcontrolled studyen_US
dc.subjectdrug bioavailabilityen_US
dc.subjectdrug delivery systemen_US
dc.subjectdrug efficacyen_US
dc.subjectdrug formulationen_US
dc.subjectdrug penetrationen_US
dc.subjectdrug releaseen_US
dc.subjectdrug solubilityen_US
dc.subjectelasticityen_US
dc.subjectex vivo studyen_US
dc.subjecthistopathologyen_US
dc.subjectin vitro studyen_US
dc.subjectlipid vesicleen_US
dc.subjectmaleen_US
dc.subjectnanoencapsulationen_US
dc.subjectnonhumanen_US
dc.subjectparticle sizeen_US
dc.subjectraten_US
dc.subjectskin permeabilityen_US
dc.subjectzeta potentialen_US
dc.titleFlexible nano-sized lipid vesicles for the transdermal delivery of colchicine; in vitro/in vivo investigationen_US
dc.typeArticleen_US
dcterms.isReferencedByDalbeth, N., Lauterio, T.J., Wolfe, H.R., Mechanism of action of colchicine in the treatment of gout (2014) Clin. Therapeut., 36, pp. 1465-1479; Nuki, G., Colchicine: its mechanism of action and efficacy in crystal-induced inflammation (2008) Curr. Rheumatol. Rep., 10, pp. 218-227; Neogi, T., Jansen, T.L.A., Dalbeth, N., Fransen, J., Schumacher, H.R., Berendsen, D., Brown, M., Ogdie A, A., Gout classification criteria an American College of rheumatology/European league against rheumatism collaborative initiative (2015) Arthritis Rheum., 67, pp. 2557-2568; Sarkar, R.N., Bhattacharyya, K., (2012) Gout � updated, Med. update, 22, pp. 674-679; Khanna, D.I., Khanna, P.P., Fitzgerald, J.D., Singh, M.K., Bae, S., Neogi, T., Pillinger, M.H., Terkeltaub, R., American college of rheumatology guidelines for management of gout. Part 2: therapy and anti-inflammatory prophylaxis of acute gouty arthritis (2012) Arthritis Care Res., 64, pp. 1447-1461; Bonnel, R.A., Villalba, M.L., Karwoski, C.B., Beitz, J., Deaths associated with inappropriate intravenous colchicine administration (2002) J. Emerg. Med., 22, pp. 385-387; Brahamnkar, D.M., Jaiswal, S.B., Biopharmaceutics and Pharmacokinetics: a Treatise (1995), pp. 35-36. , Vallabh Prakashan India New Delhi; Rochdi, M., Sabouraud, A., Girre, C., Venet, R., Scherrmann, J.M., Pharmacokinetics and absolute bioavailability of colchicine after I.V. and oral administration in healthy human volunteers and elderly subjects (1994) Eur. J. Clin. Pharmacol., 46, pp. 351-354; Singh, H.P., Tiwary, A.K., Jain, S., Preparation and in vitro, in vivo characterization of elastic liposomes encapsulating cyclodextrin-colchicine complexes for topical delivery of colchicine (2010) Yakugaku Zasshi, 130, pp. 397-407; Harris, M.D., Siegel, L.B., Alloway, J.A., Gout and hyperuricemia (1999) Am. Fam. Physician, 59, pp. 925-934; Evans, T.I., Wheeler, M.T., Small, R.E., Breitbach, S.A., Sanders, K.M., Roberts, W.N., A comprehensive investigation of inpatient intravenous colchicine use shows more education is needed (1996) J. Rheumatol., 23, pp. 143-148; Honeywell-Nguyen, P.L., Bouwstra, J.A., Vesicles as a tool for transdermal and dermal delivery (2005) Drug Discov. Today, 2, pp. 67-74; Singh, H.P., Utreja, P., Tiwary, A.K., Jain, S., Elastic liposomal formulation for sustained delivery of colchicine: in vitro characterization and in vivo evaluation of anti-gout activity (2009) AAPS, 11, pp. 54-64; Cevc, G., Transfersomes, liposomes and other lipid suspensions on the skin: permeation enhancement, vesicle penetration, and transdermal drug delivery (1996) Crit. Rev. Ther. Drug Carrier Syst., 13, pp. 257-388; Jain, S., Tiwary, A.K., Jain, N.K., PEGylated elastic liposomal formulation for lymphatic targeting of zidovudine (2008) Curr. Drug Deliv., 5, pp. 275-281; Maestrelli, F., Gonz�lez-Rodr�guez, M.L., Rabasco, A.M., Mura, P., Effect of preparation technique on the properties of liposomes encapsulating ketoprofen-cyclodextrin complexes aimed for transdermal delivery (2006) Int. J. Pharm., 312, pp. 53-60; Rowe, R.C., Sheskey, P.J., Handbook of Pharmaceutical Excipients (2003), pp. 186-189. , fourth ed. Weller Pharmaceutical Press London; Demicheli, C., Ochoa, R., da Silva, J.B.B., de Melo, A.L., Falc�ao, C.A.M., Rossi-Bergmann, B., Sinisterra, R.D., Fr�ezard, F., Oral delivery of meglumine antimoniate-beta-cyclodextrin complex for treatment of leishmaniasis (2004) Antimicrob. Agents Chemother., 48, pp. 100-103; Martins, P.S., Ochoa, R., Pimenta, A.M.C., Ferreira, L.A.M., Melo, A.L., da Silva, J.B.B., Sinisterra, R.D., Fre� zard, F., Mode of action of beta-cyclodextrin as an absorption enhancer of the water-soluble drug meglumine antimoniate (2006) Int. J. Pharm., 325, pp. 39-47; Higuchi, T., Connors, K.A., Phase-solubility techniques (1965) Adv. Anal. Chem. Instrum., 4, pp. 117-122; Loh, G.O.K., Tan, Y.T.F., Peh, K.K., Enhancement of norfloxacin solubility via inclusion complexation with ?-cyclodextrin and its derivative hydroxypropyl-?-cyclodextrin (2016) Asian J. Pharm. Sci., 11, pp. 536-546; Bungaruang, L., Gutmann, A., Nidetzkya, B., B-cyclodextrin improves solubility and enzymatic C-glucosylation of the flavonoid phloretin (2016) Adv. Synth. Catal., 358, pp. 486-493; Patil, S.S., Gupta, V.R.M., Gupta, K.S., Doddayya, H., Effect of pH, selected cyclodextrins and complexation methods on the solubility of lornoxicam (2014) Int. J. Pharm. Pharmaceut. Sci., 6, pp. 324-327; Dinesh, P., Rasool, M.B., An isoquinoline alkaloid suppresses TXNIP mediated NLRP3 inflammasome activation in MSU crystal stimulated RAW 264.7 macrophages through the upregulation of Nrf2 transcription factor and alleviates MSU crystal induced inflammation in rats (2017) Int. Immunopharm., 44, pp. 26-37; Sabina, E.P., Rasool, M., Mathew, L., Ezilrani, P., Indu, H., 6-Shogaol inhibits monosodium urate crystal-induced inflammation - an in vivo and in vitro study (2010) Food Chem. Toxicol., 48, pp. 229-235; Yonetani, Y., Iwaki, K., Effects of uricosuric drugs and diuretics on uric acid excretion in oxonated-treated rats (1983) Jap. J. Pharmacol., 33, pp. 947-954; Sarvaiya, V.N., Sadariya, K.A., Pancha, P.G., Thaker, A.M., Patel, A.C., Prajapati, A.S., Evaluation of antigout activity of Phyllanthus emblica fruit extracts on potassium oxonate-induced gout rat model (2015) Vet. World, 8, pp. 1230-1236; Abdellatif, M.M., Khalil, I.A., Khalil, M.A.F., Sertaconazole nitrate loaded nanovesicular systems for targeting skin fungal infection: in-vitro, ex-vivo and in-vivo evaluation (2007) Int. J. Pharm., 527, pp. 1-11; Silva, C.R., Fr�hlich, J.K., Oliveira, S.M., Cabreira, T.N., Rossato, M.F., Trevisan, G., Froeder, A.L., Ferreira, J., The antinociceptive and anti-inflammatory effects of the crude extract of jatropha isabellei in a rat gout model (2013) J. Ethnopharmacol., 145, pp. 205-213; Connors, K.A., Population characteristics of cyclodextrin complex stabilities in aqueous solution (1995) J. Pharmacol. Sci., 84, pp. 843-848; Connors, K.A., The stability of cyclodextrin complexes in solution (1997) Chem. Rev., 197, pp. 1325-1357; Yap, K.L., Liu, X., Thenmozhiyal, J.C., Ho, P.C., Characterization of the 13-cis-retinoic acid/cyclodextrin inclusion complexes by phase solubility, photostability, physicochemical and computational analysis (2005) Eur. J. Pharmaceut. Sci., 25, pp. 49-56; Shamoon, A.S., Apoorva, D., Anoop, P., Singh, P.K., Tanveer, H., Sudha, J., Neeraj, M., Molecular structure, vibrational spectra and potential energy distribution of colchicine using ab initio and density functional theory (2009) J. Comput. Chem. Japan., 8, pp. 59-72; Shrikant, P.B., Dhanyakumar, D.C., Rohit, R.S., Dhananjay, S.G., Nagnath, D.P., Rahul, P.G., Effect of method of preparation on pioglitazone HCl-?-cyclodextrin inclusion complexes (2010) Asian J. Pharm., 4, pp. 168-172; Al-Marzouqi, A.H., Elwy, H.M., Shehadi, I., Adem, A., Physicochemical properties of antifungal drug-cyclodextrin complexes prepared by supercritical carbon dioxide and by conventional techniques (2009) J. Pharm. Biomed., 49, pp. 227-233; Fang, Y.P., Tsai, Y.H., Wu, P.C., Huang, Y.B., Comparison of 5-aminolevulinic acid-encapsulated liposome versus ethosome for skin delivery for photodynamic therapy (2008) Int. J. Pharm., 356, pp. 144-152; Lasch, J., Laub, P., Woblrab, W., How deep do intact liposomes penetrate into human skin? (1991) J. Contr. Release, 18, pp. 55-58; Lopez, C., Maza, A., Coderch, L., Lopez, I.C., Wehrli, E., Parra, J.L., Direct formation of mixed micelle in the solublization of phospholipid liposomes by Triton X-100 (1998) FEBS Lett., 426, pp. 314-318; Shaji, J., Shinde, A., Oral multi-particulate pulsatile drug delivery systems: a review (2011) Int. Res. J. Pharm., 2, pp. 22-27; Nava, G., Pi��n, E., Mendoza, L., Mendoza, N., Quintanar, D., Ganem, A., Formulation and in vitro, ex vivo and in vivo evaluation of elastic liposomes for transdermal delivery of ketorolac tromethamine (2011) Pharm. Times, 3, pp. 954-970; Uchegbu, I.F., Sch�tzlein, A.G., Tetley, L., Gray, A.I., Sludden, J., Siddique, S., Mosha, E., Polymeric chitosan-based vesicles for drug delivery (1998) J. Pharm. Pharmacol., 50, pp. 453-458; Hao, Y., Zhao, F., Li, N., Yang, Y., Li, K., Studies on a high encapsulation of colchicine by a noisome system (2002) Int. J. Pharm., 244, pp. 73-80; Abdallah, M., Transfersomes as a transdermal drug delivery system for enhancement the antifungal activity of nystatin (2013) Int. J. Pharm. Pharmaceut. Sci., 5, pp. 560-567; Gharib, A., Faezizadeh, Z., Mesbah-Namin, S.A., Saravani, R., reparation, characterization and in vitro efficacy of magnetic nanoliposomes containing the artemisinin and transferrin (2014) Daru, 22, p. 44; Fatouros, D.G., Hatzidimitriou, K., Antimisiaris, S.G., Liposomes encapsulating prednisolone and prednisolone�cyclodextrin complexes: comparison of membrane integrity and drug release (2001) Eur. J. Pharmaceut. Sci., 13, pp. 287-296; Gillet, A., Grammenos, A., Comp�re, P., Evrard, B., Piel, G., Development of a new topical system: drug-in-cyclodextrin-in-deformable liposome (2009) Int. J. Pharm., 380, pp. 174-180; Kaur, N., Puri, R., Jain, S.K., Drug-cyclodextrin-vesicles dual Carrier approach for skin targeting of anti-acne agent (2010) AAPS PharmSciTech, 11, pp. 528-537; Laouini, A., Jaafar-Maalej, C., Sfar, S., Charcosset, C., Fessi, H., Liposome preparation using a hollow fiber membrane contactor application to spironolactone encapsulation (2011) Int. J. Pharm., 415, pp. 53-61; Kirjavainen, M., M�nkk�nen, J., Saukkosaari, M., Valjakka-Koskela, R., Kiesvaara, J., Urtti, A., Phospholipids affect stratum corneum lipid bilayer fluidity and drug partitioning into the bilayers (1999) J. Contr. Release, 58, pp. 207-214; Badr-Eldin, S.M., Ahmed, O.A., Optimized nano-transfersomal films for enhanced sildenafil citrate transdermal delivery: ex vivo and in vivo evaluation (2016) Drug Des. Dev. Ther., 10, pp. 1323-1333; Uekama, K., Hiramaya, F., Irie, T., Cyclodextrin drug Carrier system (1998) Chem. Rev., 98, pp. 2045-2076; Chen, L., Mola, M., Deng, X., Mei, Z., Huang, X., Shu, G., Wei, L., Lin, Q., Dolichos falcata klein attenuated the inflammation induced by monosodium urate crystals in vivo and in vitro (2013) J. Ethnopharmacol., 150, pp. 545-552; Ferrari, F.C., L Lima, R.C., Ferraz Filha, Z.S., Barros, C.H., M Ara�jo, M.C.P., Guimar�es, D.A.S., Effects of pimenta pseudocaryophyllus extracts on gout: anti-inflammatory activity and anti-hyperuricemic effect through xantine oxidase and uricosuric action (2016) J. Ethnopharmacol., 180, pp. 37-42; Nyborg, A.C., Ward, C., Zacco, A., Chacko, B., Grinberg, L., Geoghegan, J.C., Bean, R., Baca, M., A therapeutic uricase with reduced immunogenicity risk and improved development properties (2016) PloS One, 11. , https://doi.org/10.1371/journal.pone.0167935; Arkene, S.A.L., Simon, O., Shelly, J., Gardener, M., 6-Shogaol reduced chronic inflammatory response in calcium pyro phosphate dihydrate crystals (2006) J. Exp. Med., 133, p. 100
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description: