Neurobehavioral investigation and acetylcholinesterase inhibitory activity study for some new coumarin derivatives
dc.Affiliation | October University for modern sciences and Arts (MSA) | |
dc.contributor.author | Mahmoud W.R. | |
dc.contributor.author | Nissan Y.M. | |
dc.contributor.author | Elsawah M.M. | |
dc.contributor.author | Refaey R.H. | |
dc.contributor.author | Ragab M.F. | |
dc.contributor.author | Amin K.M. | |
dc.contributor.other | Pharmaceutical Chemistry Department | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | Cairo University | |
dc.contributor.other | Kasr Elini St | |
dc.contributor.other | Cairo | |
dc.contributor.other | 11562 | |
dc.contributor.other | Egypt; Pharmaceutical Chemistry Department | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | October University for Modern Sciences and Arts (MSA) | |
dc.contributor.other | Giza | |
dc.contributor.other | Egypt; Drug Research Center | |
dc.contributor.other | Cairo | |
dc.contributor.other | Egypt; Pharmacology and Toxicology Department | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | October University for Modern Sciences and Arts (MSA) | |
dc.contributor.other | Giza | |
dc.contributor.other | Egypt | |
dc.date.accessioned | 2020-01-09T20:40:31Z | |
dc.date.available | 2020-01-09T20:40:31Z | |
dc.date.issued | 2019 | |
dc.description | Scopus | |
dc.description.abstract | Twenty four 6-aminocoumarin based derivatives were synthesized according to two schemes. All the compounds were screened for their acetylcholinesterase inhibitory activity where compound 5b proved to be the most potent AChE inhibitor with (IC50 = 37 nM) compared to tacrine and donepezil (IC50 = 55.0 and 59.0 nM, respectively). Six compounds 2f, 2g, 4b, 5b, 8b and 9b revealed superior activity over donepezil and a conclusive structure activity relationship study was conducted explaining the obtained results. Furthermore, compounds 2f, 4b and 5b were investigated for their neurobehavioral effect in vivo. All the tested compounds showed improvement of neurobehavioral experiments using donepezil as reference drug. In addition, compounds 2f, 4b and 5b were able to reduce extracellular deposition of amyloid beta 42 in a comparable manner to donepezil. The binding modes of the synthesized compounds were evaluated in silico via molecular docking in the active site of AChE, as well as molecular dynamics simulation study. A pharmacophore model was generated for the newly synthesized compounds. � 2019 Elsevier Masson SAS | en_US |
dc.description.uri | https://www.scimagojr.com/journalsearch.php?q=17464&tip=sid&clean=0 | |
dc.identifier.doi | https://doi.org/10.1016/j.ejmech.2019.111651 | |
dc.identifier.doi | PubMed ID 31479975 | |
dc.identifier.issn | 2235234 | |
dc.identifier.other | https://doi.org/10.1016/j.ejmech.2019.111651 | |
dc.identifier.other | PubMed ID 31479975 | |
dc.identifier.uri | https://t.ly/LXMJA | |
dc.language.iso | English | en_US |
dc.publisher | Elsevier Masson SAS | en_US |
dc.relation.ispartofseries | European Journal of Medicinal Chemistry | |
dc.relation.ispartofseries | 182 | |
dc.subject | Acetylcholinesterase inhibitors | en_US |
dc.subject | Alzheimer's disease | en_US |
dc.subject | Coumarin derivatives | en_US |
dc.subject | 2 (4 fluorophenyl) 3 (2 oxo 2h chromen 6 yl)thiazolidin 4 one | en_US |
dc.subject | 2 (4 methoxyphenyl) 3 (2 oxo 2h chromen 6 yl)thiazolidin 4 one | en_US |
dc.subject | 2 [(2 oxo 2h chromen 6 yl)amino] n phenylacetamide | en_US |
dc.subject | 2 [4 (methylthio)phenyl] 3 (2 oxo 2h chromen 6 yl)thiazolidin 4 one | en_US |
dc.subject | 5 (4 bromrobenzylidene) 2 [(2 oxo 2h chromen 6 yl)imino]thiazolidin 4 one | en_US |
dc.subject | 5 (4 chlorobenzylidene) 2 [(2 oxo 2h chromen 6 yl)imino]thiazolidin 4 one | en_US |
dc.subject | 5 (4 fluorobenzylidene) 2 [(2 oxo 2h chromen 6 yl)imino]thiazolidin 4 one | en_US |
dc.subject | 5 (4 methoxybenzylidene) 2 [(2 oxo 2h chromen 6 yl)imino]thiazolidin 4 one | en_US |
dc.subject | 5 benzylidene 2 [(2 oxo 2h chromen 6 yl)imino]thiazolidin 4 one | en_US |
dc.subject | 5 [4 (dimethylamino)benzylidene] 2 [(2 oxo 2h chromen 6 yl)imino]thiazolidin 4 one | en_US |
dc.subject | 5 [4 (methylthio)benzylidene] 2 [(2 oxo 2h chromen 6 yl)imino]thiazolidin 4 one | en_US |
dc.subject | 6 (benzylideneamino) 2h chromen 2 one | en_US |
dc.subject | 6 [(2 morpholino 2 oxoethyl)amino] 2h chromen 2 one | en_US |
dc.subject | 6 [(2 oxo 2 phenylethyl)amino] 2h chromen 2 one | en_US |
dc.subject | 6 [(4 bromobenzylidene)amino] 2h chromen 2 one | en_US |
dc.subject | 6 [(4 chlorobenzylidene)amino] 2h chromen 2 on | en_US |
dc.subject | 6 [(4 flurobenzylidene)amino] 2h chromen 2 one | en_US |
dc.subject | 6 [(4 methoxybenzylidene)amino] 2h chromen 2 one | en_US |
dc.subject | 6 [[2 (4 methoxyphenyl) 2 oxo ethyl]amino) 2h chromen 2 one | en_US |
dc.subject | 6 [[2 oxo 2 (4 phenylpiperazin 1 yl)ethyl]amino] 2h chromen 2 one | en_US |
dc.subject | 6 [[4 (dimethylamino)benzylidene]amino] 2h chromen 2 one | en_US |
dc.subject | 6 [[4 (methylthio)benzylidene]amino] 2h chromen 2 one | en_US |
dc.subject | acetylcholinesterase | en_US |
dc.subject | cholinesterase inhibitor | en_US |
dc.subject | coumarin derivative | en_US |
dc.subject | donepezil | en_US |
dc.subject | n (4 fluorophenyl) 2 [(2 oxo 2h chromen 6 yl)amino]acetamide | en_US |
dc.subject | n (4 methoxyphenyl) 2 [(2 oxo 2h chromen 6 yl)amino]acetamide | en_US |
dc.subject | nootropic agent | en_US |
dc.subject | tacrine | en_US |
dc.subject | unclassified drug | en_US |
dc.subject | acetylcholinesterase | en_US |
dc.subject | cholinesterase inhibitor | en_US |
dc.subject | coumarin derivative | en_US |
dc.subject | adult | en_US |
dc.subject | Alzheimer disease | en_US |
dc.subject | animal experiment | en_US |
dc.subject | animal model | en_US |
dc.subject | animal tissue | en_US |
dc.subject | Article | en_US |
dc.subject | cognition | en_US |
dc.subject | computer model | en_US |
dc.subject | controlled study | en_US |
dc.subject | drug synthesis | en_US |
dc.subject | enzyme activity | en_US |
dc.subject | enzyme inhibition | en_US |
dc.subject | escape latency | en_US |
dc.subject | IC50 | en_US |
dc.subject | in vivo study | en_US |
dc.subject | male | en_US |
dc.subject | memory consolidation | en_US |
dc.subject | molecular docking | en_US |
dc.subject | molecular dynamics | en_US |
dc.subject | Morris water maze test | en_US |
dc.subject | mouse | en_US |
dc.subject | nonhuman | en_US |
dc.subject | novel object recognition test | en_US |
dc.subject | pharmacophore | en_US |
dc.subject | spatial memory | en_US |
dc.subject | structure activity relation | en_US |
dc.subject | Y-maze test | en_US |
dc.subject | animal | en_US |
dc.subject | chemical structure | en_US |
dc.subject | chemistry | en_US |
dc.subject | dose response | en_US |
dc.subject | metabolism | en_US |
dc.subject | synthesis | en_US |
dc.subject | Acetylcholinesterase | en_US |
dc.subject | Animals | en_US |
dc.subject | Cholinesterase Inhibitors | en_US |
dc.subject | Coumarins | en_US |
dc.subject | Dose-Response Relationship, Drug | en_US |
dc.subject | Male | en_US |
dc.subject | Mice | en_US |
dc.subject | Molecular Docking Simulation | en_US |
dc.subject | Molecular Structure | en_US |
dc.subject | Structure-Activity Relationship | en_US |
dc.title | Neurobehavioral investigation and acetylcholinesterase inhibitory activity study for some new coumarin derivatives | en_US |
dc.type | Article | en_US |
dcterms.isReferencedBy | Reiman, E.M., Quiroz, Y.T., Fleisher, A.S., Chen, K., Velez-Pardo, C., Jimenez-Del-Rio, M., Fagan, A.M., Lopera, F., Brain imaging and fluid biomarker analysis in young adults at genetic risk for autosomal dominant alzheimer's disease in the presenilin 1 e280a kindred: a case-control study (2012) Lancet Neurol., 11, pp. 1048-1056; Wilson, R.S., Segawa, E., Boyle, P.A., Anagnos, S.E., Hizel, L.P., Bennett, D.A., The natural history of cognitive decline in alzheimer's disease (2012) Psychol. Aging, 27, pp. 1008-1017; Association, A.S., Alzheimer's association report "2019 alzheimer's disease facts and figures (2019) Alzheimer's Dementia, 15, pp. 321-387; Cummings, J., Fox, N., Defining disease modifying therapy for alzheimer's disease (2017) j. prev. Alzheimer's dis., 4, pp. 109-115; Cooper, E.L., Ma, M.J., Alzheimer disease: clues from traditional and complementary medicine (2017) J. trad. complem. med., 7, pp. 380-385; Perry, E., Walker, M., Grace, J., Perry, R., Acetylcholine in mind: a neurotransmitter correlate of consciousness? (1999) Trends Neurosci., 22, pp. 273-280; Mufson, E.J., Counts, S.E., Perez, S.E., Ginsberg, S.D., Cholinergic system during the progression of alzheimer's disease: therapeutic implications (2008) Expert Rev. Neurother., 8, pp. 1703-1718; Colovic, M.B., Krstic, D.Z., Lazarevic-Pasti, T.D., Bondzic, A.M., Vasic, V.M., Acetylcholinesterase inhibitors: pharmacology and toxicology (2013) Curr. Neuropharmacol., 11, pp. 315-335; Hsiao, K., Chapman, P., Nilsen, S., Eckman, C., Harigaya, Y., Younkin, S., Yang, F., Cole, G., Correlative memory deficits, abeta elevation, and amyloid plaques in transgenic mice (1996) Science (New York, N.Y.), 274, pp. 99-102; Miedel, C.J., Patton, J.M., Miedel, A.N., Miedel, E.S., Levenson, J.M., Assessment of spontaneous alternation, novel object recognition and limb clasping in transgenic mouse models of amyloid-? and tau neuropathology (2017) J. Vis. Exp., pp. 55523-55531; YK, U., FJ, B., HP, N., R, O., v.H, S., Neurobehavioral tests in rat models of degenerative brain diseases (2010) Methods Mol. Biol., 597, pp. 333-356; Cacabelos, R., Donepezil in alzheimer's disease: from conventional trials to pharmacogenetics (2007) Neuropsychiatric Dis. Treat., 3, pp. 303-333; Klimova, B., Maresova, P., Valis, M., Hort, J., Kuca, K., Alzheimer's disease and language impairments: social intervention and medical treatment (2015) Clin. Interv. Aging, 10, pp. 1401-1407; Yuan, H., Ma, Q., Ye, L., Piao, G., The traditional medicine and modern medicine from natural products (2016) Molecules, 21, pp. 559-577; Jain, P., Joshi, H., Coumarin: chemical and pharmacological profile (2012) J. Appl. Pharm. Sci., 2, pp. 236-240; Amin, K.M., Rahman, D.E.A., Al-Eryani, Y.A., Synthesis and preliminary evaluation of some substituted coumarins as anticonvulsant agents (2008) Bioorg. Med. Chem., 16, pp. 5377-5388; de Souza, L.G., Renna, M.N., Figueroa-Villar, J.D., Coumarins as cholinesterase inhibitors: a review" (2016) Chem. Biol. Interact., 254, pp. 11-23; Wu, C.R., Chang, C.L., Hsieh, P.Y., Lin, L.W., Ching, H., Psoralen and isopsoralen, two coumarins of psoraleae fructus, can alleviate scopolamine-induced amnesia in rats (2007) Planta Med., 73, pp. 275-278; Xie, S.S., Wang, X., Jiang, N., Yu, W., Wang, K.D., Lan, J.S., Li, Z.R., Kong, L.Y., Multi-target tacrine-coumarin hybrids: cholinesterase and monoamine oxidase b inhibition properties against alzheimer's disease (2015) Eur. J. Med. Chem., 95, pp. 153-165; Zhang, J., Jiang, C.-S., Synthesis and evaluation of coumarin/piperazine hybrids as acetylcholinesterase inhibitors (2018) Med. Chem. Res., 27, pp. 1717-1727; Razavi, S.F., Khoobi, M., Nadri, H., Sakhteman, A., Moradi, A., Emami, S., Foroumadi, A., Shafiee, A., Synthesis and evaluation of 4-substituted coumarins as novel acetylcholinesterase inhibitors" (2013) Eur. J. Med. Chem., 64, pp. 252-259; Sonmez, F., Zengin Kurt, B., Gazioglu, I., Basile, L., Dag, A., Cappello, V., Ginex, T., Guccione, S., Design, synthesis and docking study of novel coumarin ligands as potential selective acetylcholinesterase inhibitors (2017) J. Enzym. Inhib. Med. Chem., 32, pp. 285-297; Alipour, M., Khoobi, M., Moradi, A., Nadri, H., Homayouni Moghadam, F., Emami, S., Hasanpour, Z., Shafiee, A., Synthesis and anti-cholinesterase activity of new 7-hydroxycoumarin derivatives (2014) Eur. J. Med. Chem., 82, pp. 536-544; Rollinger, J.M., Hornick, A., Langer, T., Stuppner, H., Prast, H., Acetylcholinesterase inhibitory activity of scopolin and scopoletin discovered by virtual screening of natural products (2004) J. Med. Chem., 47, pp. 6248-6254; Ali, M.Y., Jannat, S., Jung, H.A., Choi, R.J., Roy, A., Choi, J.S., Anti-alzheimer's disease potential of coumarins from angelica decursiva and artemisia capillaris and structure-activity analysis (2016) Asian Pac. J. Trop. Med., 9, pp. 103-111; Changwong, N., Sabphon, C., Ingkaninan, K., Sawasdee, P., Acetyl- and butyryl-cholinesterase inhibitory activities of mansorins and mansonones (2012) Phytother Res., 26, pp. 392-396; Xie, S.S., Lan, J.S., Wang, X., Wang, Z.M., Jiang, N., Li, F., Wu, J.J., Kong, L.Y., Design, synthesis and biological evaluation of novel donepezil-coumarin hybrids as multi-target agents for the treatment of alzheimer's disease (2016) Bioorg. Med. Chem., 24, pp. 1528-1539; Bagheri, S.M., Khoobi, M., Nadri, H., Moradi, A., Emami, S., Jalili-Baleh, L., Jafarpour, F., Shafiee, A., Synthesis and anticholinergic activity of 4-hydroxycoumarin derivatives containing substituted benzyl-1,2,3-triazole moiety (2015) Chem. Biol. Drug Des., 86, pp. 1215-1220; Najafi, Z., Saeedi, M., Mahdavi, M., Sabourian, R., Khanavi, M., Tehrani, M.B., Moghadam, F.H., Akbarzadeh, T., Design and synthesis of novel anti-alzheimer's agents: Acridine-chromenone and quinoline-chromenone hybrids (2016) Bioorg. Chem., 67, pp. 84-94; Kim, D.H., Kim, D.Y., Kim, Y.C., Jung, J.W., Lee, S., Yoon, B.H., Cheong, J.H., Ryu, J.H., Nodakenin, a coumarin compound, ameliorates scopolamine-induced memory disruption in mice (2007) Life Sci., 80, pp. 1944-1950; Hornick, A., Lieb, A., Vo, N.P., Rollinger, J.M., Stuppner, H., Prast, H., The coumarin scopoletin potentiates acetylcholine release from synaptosomes, amplifies hippocampal long-term potentiation and ameliorates anticholinergic- and age-impaired memory (2011) Neuroscience, 197, pp. 280-292; Hilgert, M., Noldner, M., Chatterjee, S.S., Klein, J., Ka-672 inhibits rat brain acetylcholinesterase in vitro but not in vivo (1999) Neurosci. Lett., 263, pp. 193-196; Hoerr, R., Noeldner, M., Ensaculin (ka-672 hcl): a multitransmitter approach to dementia treatment (2002) CNS Drug Rev., 8, pp. 143-158; Zhou, X., Wang, X.-B., Wang, T., Kong, L.-Y., Design, synthesis, and acetylcholinesterase inhibitory activity of novel coumarin analogues (2008) Bioorg. Med. Chem., 16, pp. 8011-8021; Vi�a, D., Matos, M.J., Y��ez, M., Santana, L., Uriarte, E., 3-substituted coumarins as dual inhibitors of ache and mao for the treatment of alzheimer's disease (2012) Med. Chem. Commun., 3, pp. 213-218; Prasad, S., Kumar, B., Kumar, S., Chand, K., Kamble, S.S., Gautam, H.K., Sharma, S.K., Acetamide derivatives of chromen-2-ones as potent cholinesterase inhibitors (2017) Arch. Pharm. (Weinheim), 350, pp. 1-17; Nam, S.O., Park, D.H., Lee, Y.H., Ryu, J.H., Lee, Y.S., Synthesis of aminoalkyl-substituted coumarin derivatives as acetylcholinesterase inhibitors" (2014) Bioorg. Med. Chem., 22, pp. 1262-1267; Piazzi, L., Cavalli, A., Colizzi, F., Belluti, F., Bartolini, M., Mancini, F., Recanatini, M., Rampa, A., Multi-target-directed coumarin derivatives: hache and bace1 inhibitors as potential anti-alzheimer compounds (2008) Bioorg. Med. Chem. Lett, 18, pp. 423-426; Kurt, B.Z., Gazioglu, I., Sonmez, F., Kucukislamoglu, M., Synthesis, antioxidant and anticholinesterase activities of novel coumarylthiazole derivatives (2015) Bioorg. Chem., 59, pp. 80-90; Parra, M.L., Elgueta, E.Y., Jimenez, V., Hidalgo, P.I., Novel amides and schiff's bases derived from 1,3,4-oxadiazole derivatives: synthesis and mesomorphic behaviour (2009) Liq. Cryst., 36, pp. 301-317; Khan, K.M., Irfan, M., Ashraf, M., Taha, M., Saad, S.M., Perveen, S., Choudhary, M.I., Synthesis of phenyl thiazole hydrazones and their activity against glycation of proteins (2015) Med. Chem. Res., 24, pp. 3077-3085; Turan-Zitouni, G., Ozdemir, A., Kaplancikli, Z.A., Altintop, M.D., Temel, H.E., �ift�i, G.A., Synthesis and biological evaluation of some thiazole derivatives as new cholinesterase inhibitors (2013) J. Enzym. Inhib. Med. Chem., 28, pp. 509-514; Sharath Kumar, K., Chakrabhavi Dhananjaya, M., Das, J., S Rakesh, K., Hanumappa, A., Basappa, S Rangappa, K., Synthesis and acetylcholinesterase/butyrylcholinesterase inhibition activity of arecoline-, 4-thiazolidinone- and piperidine- based conjugates" (2014) As. J. Pharm. Clin. Res., 8, pp. 142-148; Mohsen, U.A., Kaplancikli, Z.A., Ozkay, Y., Yurttas, L., Synthesis and evaluation of anti-acetylcholinesterase activity of some benzothiazole based new piperazine-dithiocarbamate derivatives (2015) Drug Res., 65, pp. 176-183; Ellman, G.L., Courtney, K.D., Andres, V., Featherstone, R.M., A new and rapid colorimetric determination of acetylcholinesterase activity (1961) Biochem. Pharmacol., 7, pp. 88-95; Foley, A.M., Ammar, Z.M., Lee, R.H., Mitchell, C.S., Systematic review of the relationship between amyloid-beta levels and measures of transgenic mouse cognitive deficit in alzheimer's disease (2015) J. Alzheimer's Dis., 44, pp. 787-795; Singh, B., Sharma, B., Jaggi, A.S., Singh, N., Attenuating effect of lisinopril and telmisartan in intracerebroventricular streptozotocin induced experimental dementia of alzheimer's disease type: possible involvement of ppar-gamma agonistic property (2013) J. Renin-Angiotensin-Aldosterone Syst. JRAAS, 14, pp. 124-136; Gupta, R., Gupta, L.K., Mediratta, P.K., Bhattacharya, S.K., Effect of resveratrol on scopolamine-induced cognitive impairment in mice (2012) Pharmacol. Rep., 64, pp. 438-844; D'Hooge, R., De Deyn, P.P., Applications of the morris water maze in the study of learning and memory (2001) Brain Res. Brain Res. Rev., 36, pp. 60-90; Baratz, R., Tweedie, D., Wang, J.Y., Rubovitch, V., Luo, W., Hoffer, B.J., Greig, N.H., Pick, C.G., Transiently lowering tumor necrosis factor-alpha synthesis ameliorates neuronal cell loss and cognitive impairments induced by minimal traumatic brain injury in mice (2015) J. Neuroinflammation, 12, pp. 1-14; Nozawa, Y., Mimura, M., Yamada, K., Sugita, M., Shibakusa, T., Koyama, N., Dried bonito broth improves cognitive function via the histaminergic system in mice (2014) Biomed. Res., 35, pp. 311-319; Silva, B., Sousa, L., Miranda, A., Vasconcelos, A., Reis, H., Barcelos, L., Arantes, R., Rachid, M.A., Memory deficit associated with increased brain proinflammatory cytokine levels and neurodegeneration in acute ischemic stroke (2015) Arq. Neuropsiquiatr., 73, pp. 655-659; Walesiuk, A., Trofimiuk, E., Braszko, J.J., Gingko biloba extract diminishes stress-induced memory deficits in rats (2005) Pharmacol. Rep., 57, pp. 176-187; Tamura, H., Ishikawa, Y., Hino, N., Maeda, M., Yoshida, S., Kaku, S., Shiosaka, S., Neuropsin is essential for early processes of memory acquisition and schaffer collateral long-term potentiation in adult mouse hippocampus in vivo (2006) J. Physiol., 570, pp. 541-551; Yadav, R., Hillman, B.G., Gupta, S.C., Suryavanshi, P., Bhatt, J.M., Pavuluri, R., Stairs, D.J., Dravid, S.M., Deletion of glutamate delta-1 receptor in mouse leads to enhanced working memory and deficit in fear conditioning (2013) PLoS One, 8, pp. 1-12; Suryavanshi, P.S., Ugale, R.R., Yilmazer-Hanke, D., Stairs, D.J., Dravid, S.M., Glun2c/glun2d subunit-selective nmda receptor potentiator ciq reverses mk-801-induced impairment in prepulse inhibition and working memory in y-maze test in mice (2014) Br. J. Pharmacol., 171, pp. 799-809; McCullagh, E.A., Featherstone, D.E., Behavioral characterization of system xc- mutant mice (2014) Behav. Brain Res., 265, pp. 1-11; Prade, E., Bittner, H.J., Sarkar, R., Lopez Del Amo, J.M., Althoff-Ospelt, G., Multhaup, G., Hildebrand, P.W., Reif, B., Structural mechanism of the interaction of alzheimer disease abeta fibrils with the non-steroidal anti-inflammatory drug (nsaid) sulindac sulfide (2015) J. Biol. Chem., 290, pp. 28737-28745; Steardo, L., Jr., Bronzuoli, M.R., Iacomino, A., Esposito, G., Steardo, L., Scuderi, C., Does neuroinflammation turn on the flame in alzheimer's disease? Focus on astrocytes (2015) Front. Neurosci., 9. , 259-259; Page, R.M., Gutsmiedl, A., Fukumori, A., Winkler, E., Haass, C., Steiner, H., Beta-amyloid precursor protein mutants respond to gamma-secretase modulators (2010) J. Biol. Chem., 285, pp. 17798-17810; Chen, Y., Liang, Z., Blanchard, J., Dai, C.L., Sun, S., Lee, M.H., Grundke-Iqbal, I., Gong, C.X., A non-transgenic mouse model (icv-stz mouse) of alzheimer's disease: similarities to and differences from the transgenic model (3xtg-ad mouse) (2013) Mol. Neurobiol., 47, pp. 711-725; Garcez, M.L., Falchetti, A.C., Mina, F., Budni, J., Alzheimer's disease associated with psychiatric comorbidities (2015) An. Acad. Bras. Cienc., 87, pp. 1461-1473; Zhao, S.S., Yang, W.N., Jin, H., Ma, K.G., Feng, G.F., Puerarin attenuates learning and memory impairments and inhibits oxidative stress in stz-induced sad mice (2015) Neurotoxicology (Little Rock), 51, pp. 166-171; Sachdeva, A.K., Misra, S., Pal Kaur, I., Chopra, K., Neuroprotective potential of sesamol and its loaded solid lipid nanoparticles in icv-stz-induced cognitive deficits: behavioral and biochemical evidence (2015) Eur. J. Pharmacol., 747, pp. 132-140; Lin, F., Jia, J., Qin, W., Enhancement of beta-amyloid oligomer accumulation after intracerebroventricular injection of streptozotocin, which involves central insulin signaling in a transgenic mouse model (2014) Neuroreport, 25, pp. 1289-1295; Song, J., Hur, B.E., Bokara, K.K., Yang, W., Cho, H.J., Park, K.A., Lee, W.T., Lee, J.E., Agmatine improves cognitive dysfunction and prevents cell death in a streptozotocin-induced alzheimer rat model (2014) Yonsei Med. J., 55, pp. 689-699; Kim, J.H., Wang, Q., Choi, J.M., Lee, S., Cho, E.J., Protective role of caffeic acid in an a?25-35-induced alzheimer's disease model (2015) Nutr. Res. Pract., 9, pp. 480-488; Pinton, S., Sampaio, T.B., Ramalho, R.M., Rodrigues, C.M.P., Nogueira, C.W., P,p'-methoxyl-diphenyl diselenide prevents neurodegeneration and glial cell activation induced by streptozotocin in rats (2013) J. Alzheimer's Dis., 33, pp. 133-144; Galdeano, C., Viayna, E., Arroyo, P., Bidon-Chanal, A., Blas, J.R., Munoz-Torrero, D., Luque, F.J., Structural determinants of the multifunctional profile of dual binding site acetylcholinesterase inhibitors as anti-alzheimer agents (2010) Curr. Pharmaceut. Des., 16, pp. 2818-2836; Duval, N., Bon, S., Silman, I., Sussman, J., Massoulie, J., Site-directed mutagenesis of active-site-related residues in torpedo acetylcholinesterase. Presence of a glutamic acid in the catalytic triad (1992) FEBS Lett., 309, pp. 421-423; Asadipour, A., Alipour, M., Jafari, M., Khoobi, M., Emami, S., Nadri, H., Sakhteman, A., Foroumadi, A., Novel coumarin-3-carboxamides bearing n-benzylpiperidine moiety as potent acetylcholinesterase inhibitors" (2013) Eur. J. Med. Chem., 70, pp. 623-630; Anand, P., Singh, B., Singh, N., A review on coumarins as acetylcholinesterase inhibitors for alzheimer's disease (2012) Bioorg. Med. Chem., 20, pp. 1175-1180; Morgan, G.T., Micklethwait, F.M.G., Cxxv.�6-aminocoumarin (1904) J. Chem. Soc. Trans., 85, pp. 1230-1238; Ganushchak, N.I., Kobrin, L.O., Bilaya, E.E., Mizyuk, V.L., Schiff bases derived from 6-amino-2h-chromen-2-one. Synthesis and 1h nmr spectra (2005) Russ. J. Org. Chem., 41, pp. 1064-1070; Kachkovski, O.D., Tolmachev, O.I., Kobryn, L.O., Bila, E.E., Ganushchak, M.I., Absorption spectra and nature of electron transitions in azomethine dyes as 6-derivatives of 2h-2-chromenone (2004) Dyes Pigments, 63, pp. 203-211; Mulwad, V., Mir, A.A., N-[coumarin-6-yl] spiro-indoloazetidin-2-ones/thiazolidin-4-ones (2008) J. Korean Chem. Soc., 52, pp. 649-656; Park, S.J., Kim, Y.H., Nam, G.H., Choe, S.H., Lee, S.R., Kim, S.U., Kim, J.S., Chang, K.T., Quantitative expression analysis of app pathway and tau phosphorylation-related genes in the icv stz-induced non-human primate model of sporadic alzheimer's disease (2015) Int. J. Mol. Sci., 16, pp. 2386-2402; Lester-Coll, N., Rivera, E.J., Soscia, S.J., Doiron, K., Wands, J.R., de la Monte, S.M., Intracerebral streptozotocin model of type 3 diabetes: relevance to sporadic alzheimer's disease (2006) J. Alzheimer's Dis., 9, pp. 13-33; Zameer, S., Kaundal, M., Vohora, D., Ali, J., Kalam Najmi, A., Akhtar, M., Ameliorative effect of alendronate against intracerebroventricular streptozotocin induced alteration in neurobehavioral, neuroinflammation and biochemical parameters with emphasis on abeta and bace-1 (2019) Neurotoxicology (Little Rock), 70, pp. 122-134; Mehla, J., Pahuja, M., Gupta, Y.K., Streptozotocin-induced sporadic alzheimer's disease: selection of appropriate dose (2013) J. Alzheimer's Dis., 33, pp. 17-21; Iqbal, K., Grundke-Iqbal, I., Alzheimer's disease, a multifactorial disorder seeking multitherapies (2010) Alzheimers Dement, 6, pp. 420-424; Halawany, A.M.E., Sayed, N.S.E., Abdallah, H.M., Dine, R.S.E., Protective effects of gingerol on streptozotocin-induced sporadic alzheimer's disease: emphasis on inhibition of ?-amyloid, cox-2, alpha-, beta - secretases and aph1a (2017) Sci. Rep., 7. , 2902-2902; Salkovic-Petrisic, M., Osmanovic, J., Grunblatt, E., Riederer, P., Hoyer, S., Modeling sporadic alzheimer's disease: the insulin resistant brain state generates multiple long-term morphobiological abnormalities including hyperphosphorylated tau protein and amyloid-beta (2009) J. Alzheimer's Dis., 18, pp. 729-750; Kraska, A., Santin, M.D., Dorieux, O., Joseph-Mathurin, N., Bourrin, E., Petit, F., Jan, C., Dhenain, M., In vivo cross-sectional characterization of cerebral alterations induced by intracerebroventricular administration of streptozotocin (2012) PLoS One, 7, pp. 1-9; Typlt, M., Mirkowski, M., Azzopardi, E., Ruettiger, L., Ruth, P., Schmid, S., Mice with deficient bk channel function show impaired prepulse inhibition and spatial learning, but normal working and spatial reference memory (2013) PLoS One, 8, pp. 1-10; Vorhees, C.V., Williams, M.T., Morris water maze: procedures for assessing spatial and related forms of learning and memory (2006) Nat. Protoc., 1, pp. 848-858; Ennaceur, A., One-trial object recognition in rats and mice: methodological and theoretical issues (2010) Behav. Brain Res., 215, pp. 244-254; Kryger, G., Silman, I., Sussman, J.L., Structure of acetylcholinesterase complexed with e2020 (aricept�): implications for the design of new anti-alzheimer drugs (1999) Structure, 7, pp. 297-307; Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., Olson, A.J., Autodock 4 and autodocktools4: Automated docking with selective receptor flexibility (2009) J. Comput. Chem., 30, pp. 2785-2791; Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E., The protein data bank (2000) Nucleic Acids Res., 28, pp. 235-242; Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., Ferrin, T.E., Ucsf chimera�a visualization system for exploratory research and analysis (2004) J. Comput. Chem., 25, pp. 1605-1612; Schneidman-Duhovny, D., Dror, O., Inbar, Y., Nussinov, R., Wolfson, H.J., Deterministic pharmacophore detection via multiple flexible alignment of drug-like molecules (2008) J. Comput. Biol., 15, pp. 737-754; Case, D.A., Ben-Shalom, I.Y., Brozell, S.R., Cerutti, D.S., Cheatham, T.E., Cruzeiro, V.W.D., Darden, T.A., Kollman, P.A., AMBER 2018, University of California, San Francisco; Wang, J., Wolf, R.M., Caldwell, J.W., Kollman, P.A., Case, D.A., Development and testing of a general amber force field (2004) J. Comput. Chem., 25, pp. 1157-1174; Maier, J.A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K.E., Simmerling, C., Ff14sb: improving the accuracy of protein side chain and backbone parameters from ff99sb (2015) J. Chem. Theory Comput., 11, pp. 3696-3713; Alaraby Salem, M., Brown, A., Two-photon absorption of fluorescent protein chromophores incorporating non-canonical amino acids: td-dft screening and classical dynamics (2015) Phys. Chem. Chem. Phys., 17, pp. 25563-25571; Roe, D.R., Cheatham, T.E., Ptraj and cpptraj: software for processing and analysis of molecular dynamics trajectory data (2013) J. Chem. Theory Comput., 9, pp. 3084-3095; Paul, J., XMGRACE, Version 5.1. 19. Turner Center for Coastal and Land-Margin Research Oregon Graduate Institute of Science and Technology Beaverton, (Oregon); Humphrey, W., Dalke, A., Schulten, K., Vmd: visual molecular dynamics (1996) J. Mol. Graph., 14, pp. 33-38 | |
dcterms.source | Scopus |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- avatar_scholar_256.png
- Size:
- 6.31 KB
- Format:
- Portable Network Graphics
- Description: