Chemometrics for resolving spectral data of cephalosporines and tracing their residue in waste water samples
dc.Affiliation | October University for modern sciences and Arts (MSA) | |
dc.contributor.author | Yehia A.M. | |
dc.contributor.author | Elbalkiny H.T. | |
dc.contributor.author | Riad S.M. | |
dc.contributor.author | Elsaharty Y.S. | |
dc.contributor.other | Analytical Chemistry Department | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | Cairo University | |
dc.contributor.other | Kasr-El Aini 13 Street | |
dc.contributor.other | Cairo | |
dc.contributor.other | 11562 | |
dc.contributor.other | Egypt; Chemistry Department | |
dc.contributor.other | School of Pharmacy and Pharmaceutical Industries | |
dc.contributor.other | Badr University in Cairo | |
dc.contributor.other | Badr City | |
dc.contributor.other | Cairo 11829 | |
dc.contributor.other | Egypt; Analytical Chemistry Department | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | October University for Modern Sciences and Arts (MSA) | |
dc.contributor.other | 6th of October City | |
dc.contributor.other | 11787 | |
dc.contributor.other | Egypt | |
dc.date.accessioned | 2020-01-09T20:40:34Z | |
dc.date.available | 2020-01-09T20:40:34Z | |
dc.date.issued | 2019 | |
dc.description | Scopus | |
dc.description.abstract | Chemometrics approaches have been used in this work to trace cephalosporins in aquatic system. Principal component regression (PCR), partial least squares (PLS), multivariate curve resolution-alternating least squares (MCR-ALS), and artificial neural networks (ANN) were compared to resolve the severally overlapped spectrum of three selected cephalosporins; cefprozil, cefradine and cefadroxil. The analytical performance of chemometric methods was compared in terms of errors. Artificial neural networks provide good recoveries with lowest error. Satisfactory results were obtained for the proposed chemometric methods whereas ANN showed better analytical performance. The qualitative meaning in MCR-ALS transformation provided very well correlations between the pure and estimated spectra of the three components. This multivariate processing of spectrophotometric data could successfully detect the studied antibiotics in waste water samples and compared favorably to alternative costly chromatographic methods. � 2019 | en_US |
dc.description.uri | https://www.scimagojr.com/journalsearch.php?q=24530&tip=sid&clean=0 | |
dc.identifier.doi | https://doi.org/10.1016/j.saa.2019.04.081 | |
dc.identifier.doi | PubMed ID 31063958 | |
dc.identifier.issn | 13861425 | |
dc.identifier.other | https://doi.org/10.1016/j.saa.2019.04.081 | |
dc.identifier.other | PubMed ID 31063958 | |
dc.identifier.uri | https://t.ly/dObOL | |
dc.language.iso | English | en_US |
dc.publisher | Elsevier B.V. | en_US |
dc.relation.ispartofseries | Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy | |
dc.relation.ispartofseries | 219 | |
dc.subject | October University for Modern Sciences and Arts | |
dc.subject | University for Modern Sciences and Arts | |
dc.subject | MSA University | |
dc.subject | جامعة أكتوبر للعلوم الحديثة والآداب | |
dc.subject | Artificial neural networks | en_US |
dc.subject | Cephalosporins | en_US |
dc.subject | Multivariate Curve Resolution-Alternating Least Squares | en_US |
dc.subject | Water samples | en_US |
dc.subject | Antibiotics | en_US |
dc.subject | Chromatographic analysis | en_US |
dc.subject | Chromatography | en_US |
dc.subject | Least squares approximations | en_US |
dc.subject | Neural networks | en_US |
dc.subject | Analytical performance | en_US |
dc.subject | Cephalosporins | en_US |
dc.subject | Chromatographic methods | en_US |
dc.subject | Multivariate curve resolution alternating least-squares | en_US |
dc.subject | Overlapped spectra | en_US |
dc.subject | Partial least square (PLS) | en_US |
dc.subject | Principal component regression | en_US |
dc.subject | Water samples | en_US |
dc.subject | Data handling | en_US |
dc.subject | antiinfective agent | en_US |
dc.subject | cephalosporin derivative | en_US |
dc.subject | artificial neural network | en_US |
dc.subject | least square analysis | en_US |
dc.subject | multivariate analysis | en_US |
dc.subject | procedures | en_US |
dc.subject | spectrophotometry | en_US |
dc.subject | waste water | en_US |
dc.subject | water pollutant | en_US |
dc.subject | Anti-Bacterial Agents | en_US |
dc.subject | Cephalosporins | en_US |
dc.subject | Least-Squares Analysis | en_US |
dc.subject | Multivariate Analysis | en_US |
dc.subject | Neural Networks (Computer) | en_US |
dc.subject | Spectrophotometry | en_US |
dc.subject | Waste Water | en_US |
dc.subject | Water Pollutants, Chemical | en_US |
dc.title | Chemometrics for resolving spectral data of cephalosporines and tracing their residue in waste water samples | en_US |
dc.type | Article | en_US |
dcterms.isReferencedBy | Zuccato, E., Calamari, D., Natangelo, M., Fanelli, R., Presence of therapeutic drugs in the environment (2000) Lancet, 355, pp. 1789-1790; Stuer-Lauridsen, F., Birkved, M., Hansen, L., L�tzh�ft, H.-C.H., Halling-S�rensen, B., Environmental risk assessment of human pharmaceuticals in Denmark after normal therapeutic use (2000) Chemosphere, 40, pp. 783-793; Meijer, D., Wilting, J., Trends in the organization of drug research: interfacing industry and universities (1997) Eur. J. Pharm. Biopharm., 43, pp. 243-252; D?bska, J., Kot-Wasik, A., Namie?nik, J., Fate and analysis of pharmaceutical residues in the aquatic environment (2004) Crit. Rev. Anal. Chem., 34, pp. 51-67; Phillips, P.J., Smith, S.G., Kolpin, D.W., Zaugg, S.D., Buxton, H.T., Furlong, E.T., Esposito, K., Stinson, B., Pharmaceutical formulation facilities as sources of opioids and other pharmaceuticals to wastewater treatment plant effluents (2010) Environ. Sci. Technol., 44, pp. 4910-4916; Petrovi?, M., �krbi?, B., �ivan?ev, J., Ferrando-Climent, L., Barcelo, D., Determination of 81 pharmaceutical drugs by high performance liquid chromatography coupled to mass spectrometry with hybrid triple quadrupole�linear ion trap in different types of water in Serbia (2014) Sci. Total Environ., 468, pp. 415-428; Wang, J., Mao, D., Mu, Q., Luo, Y., Fate and proliferation of typical antibiotic resistance genes in five full-scale pharmaceutical wastewater treatment plants (2015) Sci. Total Environ., 526, pp. 366-373; Harris, S.J., Cormican, M., Cummins, E., Antimicrobial residues and antimicrobial-resistant bacteria: impact on the microbial environment and risk to human health�a review (2012) Hum. Ecol. Risk. Assess., 18, pp. 767-809; K�mmerer, K., Antibiotics in the aquatic environment�a review�part I (2009) Chemosphere, 75, pp. 417-434; Ferech, M., Coenen, S., Malhotra-Kumar, S., Dvorakova, K., Hendrickx, E., Suetens, C., Goossens, H., European Surveillance of Antimicrobial Consumption (ESAC): outpatient antibiotic use in Europe (2006) J. Antimicrob. Chemother., 58, pp. 401-407; Goossens, H., Ferech, M., Vander Stichele, R., Elseviers, M., Group, E.P., Outpatient antibiotic use in Europe and association with resistance: a cross-national database study (2005) Lancet, 365, pp. 579-587; Wang, P., Yuan, T., Hu, J., Tan, Y., Determination of cephalosporin antibiotics in water samples by optimised solid phase extraction and high performance liquid chromatography with ultraviolet detector (2011) Int. J. Environ. Anal. Chem., 91, pp. 1267-1281; Quesada-Molina, C., Garc�a-Campa�a, A.M., del Olmo-Iruela, M., Ion-paired extraction of cephalosporins in acetone prior to their analysis by capillary liquid chromatography in environmental water and meat samples (2013) Talanta, 115, pp. 943-949; Hue, T.T.T., Son, D.C., Lan, A.N.T., Anh, N.T.K., Phong, T.K., Hiramatsu, K., A simple and rapid method to measure residue of cefexime � a cephalosporin antibiotic in the wastewater of pharmaceutical production plant (2014) J. Faculty Agric. Khushu Univ., 59, pp. 169-175; Yu, X., Tang, X., Zuo, J., Zhang, M., Chen, L., Li, Z., Distribution and persistence of cephalosporins in cephalosporin producing wastewater using SPE and UPLC�MS/MS method (2016) Sci. Total Environ., 569, pp. 23-30; Massart, D.L., Handbook of Chemometrics and Qualimetrics (1997), Elsevier Beltsville, Maryland and Washington; Brereton, R.G., Introduction to multivariate calibration in analytical chemistry (2000) Analyst, 125, pp. 2125-2154; Despagne, F., Massart, D.L., Neural networks in multivariate calibration (1998) Analyst, 123, pp. 157R-178(R); Absalan, G., Soleimani, M., Simultaneous determination of aniline and cyclohexylamine by principal component artificial neural networks (2004) Anal. Sci., 20, pp. 879-882; Yehia, A.M., Mohamed, H.M., Chemometrics resolution and quantification power evaluation: application on pharmaceutical quaternary mixture of paracetamol, guaifenesin, phenylephrine and p-aminophenol (2016) Spectrochim. Acta A, 152, pp. 491-500; Yehia, A.M., Sami, I., Riad, S.A.M., El-Saharty, Y.S., Qualitative and quantitative chemometry as stability-indicating methods for determination of dantrolene sodium and paracetamol (2018) Curr. Pharm. Anal., 14, pp. 60-67; Guiberteau, A., D�az, T.G., C�ceres, M.I.R., Burguillos, J.M.O., Mer�s, I.D., L�pez, F.S., Polarography and artificial neural network for the simultaneous determination of nalidixic acid and its main metabolite (7-hydroxymethylnalidixic acid) (2004) Talanta, 62, pp. 357-365; Chen, Q., Zhao, J., Guo, Z., Wang, X., Determination of caffeine content and main catechins contents in green tea (Camellia sinensis L.) using taste sensor technique and multivariate calibration (2010) J. Food Compos. Anal., 23, pp. 353-358; Moghadam, M.R., Dadfarnia, S., Shabani, A.M.H., Shahbazikhah, P., Chemometric-assisted kinetic�spectrophotometric method for simultaneous determination of ascorbic acid, uric acid, and dopamine (2011) Anal. Biochem., 410, pp. 289-295; Abbaspour, A., Baramakeh, L., Application of principle component analysis�artificial neural network for simultaneous determination of zirconium and hafnium in real samples (2006) Spectrochim. Acta A, 64, pp. 477-482; Galera, M.M., Garc�a, M.G., Goicoechea, H., The application to wastewaters of chemometric approaches to handling problems of highly complex matrices (2007) TrAC Trends Anal. Chem., 26, pp. 1032-1042; Riad, S.M., Salem, H., Elbalkiny, H.T., Khattab, F.I., Validated univariate and multivariate spectrophotometric methods for the determination of pharmaceuticals mixture in complex wastewater (2015) Spectrochim. Acta A, 140, pp. 451-461; Mas, S., de Juan, A., Tauler, R., Olivieri, A.C., Escandar, G.M., Application of chemometric methods to environmental analysis of organic pollutants: a review (2010) Talanta, 80, pp. 1052-1067; Beebe, K.R., Pell, R.J., Seasholtz, M.B., Chemometrics: A Practical Guide (1998), Wiley New York; Antunes, M., Sim�o, J.J., Duarte, A., Tauler, R., Multivariate curve resolution of overlapping voltammetric peaks: quantitative analysis of binary and quaternary metal mixtures (2002) Analyst, 127, pp. 809-817; Pharmacopoeia, B., The Stationery Office on Behalf of the Medicines and Healthcare Products Regulatory Agency (MHRA)-� Crown Copyright (2013); Brereton, R.G., Chemometrics: Data Analysis for the Laboratory and Chemical Plant (2003), Wiley; David Duncan, F.H., Walker, M., EPA guide line: regulatory monitoring and testing (2007) Water and Wastewater Sampling, , E.P. Authority South Australia; Hemmateenejad, B., Akhond, M., Samari, F., A comparative study between PCR and PLS in simultaneous spectrophotometric determination of diphenylamine, aniline, and phenol: effect of wavelength selection (2007) Spectrochim. Acta A, 67, pp. 958-965; Riahi, S., Hadiloo, F., Milani, S.M.R., Davarkhah, N., Ganjali, M.R., Norouzi, P., Seyfi, P., A new technique for spectrophotometric determination of pseudoephedrine and guaifenesin in syrup and synthetic mixture (2011) Drug Test. Anal., 3, pp. 319-324; Windig, W., Guilment, J., Interactive self-modeling mixture analysis (1991) Anal. Chem., 63, pp. 1425-1432; Afkhami, A., Abbasi-Tarighat, M., Khanmohammadi, H., Simultaneous determination of Co 2+ , Ni 2+ , Cu 2+ and Zn 2+ ions in foodstuffs and vegetables with a new Schiff base using artificial neural networks (2009) Talanta, 77, pp. 995-1001; B. phamacopiea, The Stationery Office on Behalf of the Medicines and Healthcare Products Regulatory Agency (MHRA)-� Crown Copyright (2012) | |
dcterms.source | Scopus |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- avatar_scholar_256.png
- Size:
- 6.31 KB
- Format:
- Portable Network Graphics
- Description: