Chemometrics for resolving spectral data of cephalosporines and tracing their residue in waste water samples

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorYehia A.M.
dc.contributor.authorElbalkiny H.T.
dc.contributor.authorRiad S.M.
dc.contributor.authorElsaharty Y.S.
dc.contributor.otherAnalytical Chemistry Department
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherCairo University
dc.contributor.otherKasr-El Aini 13 Street
dc.contributor.otherCairo
dc.contributor.other11562
dc.contributor.otherEgypt; Chemistry Department
dc.contributor.otherSchool of Pharmacy and Pharmaceutical Industries
dc.contributor.otherBadr University in Cairo
dc.contributor.otherBadr City
dc.contributor.otherCairo 11829
dc.contributor.otherEgypt; Analytical Chemistry Department
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherOctober University for Modern Sciences and Arts (MSA)
dc.contributor.other6th of October City
dc.contributor.other11787
dc.contributor.otherEgypt
dc.date.accessioned2020-01-09T20:40:34Z
dc.date.available2020-01-09T20:40:34Z
dc.date.issued2019
dc.descriptionScopus
dc.description.abstractChemometrics approaches have been used in this work to trace cephalosporins in aquatic system. Principal component regression (PCR), partial least squares (PLS), multivariate curve resolution-alternating least squares (MCR-ALS), and artificial neural networks (ANN) were compared to resolve the severally overlapped spectrum of three selected cephalosporins; cefprozil, cefradine and cefadroxil. The analytical performance of chemometric methods was compared in terms of errors. Artificial neural networks provide good recoveries with lowest error. Satisfactory results were obtained for the proposed chemometric methods whereas ANN showed better analytical performance. The qualitative meaning in MCR-ALS transformation provided very well correlations between the pure and estimated spectra of the three components. This multivariate processing of spectrophotometric data could successfully detect the studied antibiotics in waste water samples and compared favorably to alternative costly chromatographic methods. � 2019en_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=24530&tip=sid&clean=0
dc.identifier.doihttps://doi.org/10.1016/j.saa.2019.04.081
dc.identifier.doiPubMed ID 31063958
dc.identifier.issn13861425
dc.identifier.otherhttps://doi.org/10.1016/j.saa.2019.04.081
dc.identifier.otherPubMed ID 31063958
dc.identifier.urihttps://t.ly/dObOL
dc.language.isoEnglishen_US
dc.publisherElsevier B.V.en_US
dc.relation.ispartofseriesSpectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy
dc.relation.ispartofseries219
dc.subjectOctober University for Modern Sciences and Arts
dc.subjectUniversity for Modern Sciences and Arts
dc.subjectMSA University
dc.subjectجامعة أكتوبر للعلوم الحديثة والآداب
dc.subjectArtificial neural networksen_US
dc.subjectCephalosporinsen_US
dc.subjectMultivariate Curve Resolution-Alternating Least Squaresen_US
dc.subjectWater samplesen_US
dc.subjectAntibioticsen_US
dc.subjectChromatographic analysisen_US
dc.subjectChromatographyen_US
dc.subjectLeast squares approximationsen_US
dc.subjectNeural networksen_US
dc.subjectAnalytical performanceen_US
dc.subjectCephalosporinsen_US
dc.subjectChromatographic methodsen_US
dc.subjectMultivariate curve resolution alternating least-squaresen_US
dc.subjectOverlapped spectraen_US
dc.subjectPartial least square (PLS)en_US
dc.subjectPrincipal component regressionen_US
dc.subjectWater samplesen_US
dc.subjectData handlingen_US
dc.subjectantiinfective agenten_US
dc.subjectcephalosporin derivativeen_US
dc.subjectartificial neural networken_US
dc.subjectleast square analysisen_US
dc.subjectmultivariate analysisen_US
dc.subjectproceduresen_US
dc.subjectspectrophotometryen_US
dc.subjectwaste wateren_US
dc.subjectwater pollutanten_US
dc.subjectAnti-Bacterial Agentsen_US
dc.subjectCephalosporinsen_US
dc.subjectLeast-Squares Analysisen_US
dc.subjectMultivariate Analysisen_US
dc.subjectNeural Networks (Computer)en_US
dc.subjectSpectrophotometryen_US
dc.subjectWaste Wateren_US
dc.subjectWater Pollutants, Chemicalen_US
dc.titleChemometrics for resolving spectral data of cephalosporines and tracing their residue in waste water samplesen_US
dc.typeArticleen_US
dcterms.isReferencedByZuccato, E., Calamari, D., Natangelo, M., Fanelli, R., Presence of therapeutic drugs in the environment (2000) Lancet, 355, pp. 1789-1790; Stuer-Lauridsen, F., Birkved, M., Hansen, L., L�tzh�ft, H.-C.H., Halling-S�rensen, B., Environmental risk assessment of human pharmaceuticals in Denmark after normal therapeutic use (2000) Chemosphere, 40, pp. 783-793; Meijer, D., Wilting, J., Trends in the organization of drug research: interfacing industry and universities (1997) Eur. J. Pharm. Biopharm., 43, pp. 243-252; D?bska, J., Kot-Wasik, A., Namie?nik, J., Fate and analysis of pharmaceutical residues in the aquatic environment (2004) Crit. Rev. Anal. Chem., 34, pp. 51-67; Phillips, P.J., Smith, S.G., Kolpin, D.W., Zaugg, S.D., Buxton, H.T., Furlong, E.T., Esposito, K., Stinson, B., Pharmaceutical formulation facilities as sources of opioids and other pharmaceuticals to wastewater treatment plant effluents (2010) Environ. Sci. Technol., 44, pp. 4910-4916; Petrovi?, M., �krbi?, B., �ivan?ev, J., Ferrando-Climent, L., Barcelo, D., Determination of 81 pharmaceutical drugs by high performance liquid chromatography coupled to mass spectrometry with hybrid triple quadrupole�linear ion trap in different types of water in Serbia (2014) Sci. Total Environ., 468, pp. 415-428; Wang, J., Mao, D., Mu, Q., Luo, Y., Fate and proliferation of typical antibiotic resistance genes in five full-scale pharmaceutical wastewater treatment plants (2015) Sci. Total Environ., 526, pp. 366-373; Harris, S.J., Cormican, M., Cummins, E., Antimicrobial residues and antimicrobial-resistant bacteria: impact on the microbial environment and risk to human health�a review (2012) Hum. Ecol. Risk. Assess., 18, pp. 767-809; K�mmerer, K., Antibiotics in the aquatic environment�a review�part I (2009) Chemosphere, 75, pp. 417-434; Ferech, M., Coenen, S., Malhotra-Kumar, S., Dvorakova, K., Hendrickx, E., Suetens, C., Goossens, H., European Surveillance of Antimicrobial Consumption (ESAC): outpatient antibiotic use in Europe (2006) J. Antimicrob. Chemother., 58, pp. 401-407; Goossens, H., Ferech, M., Vander Stichele, R., Elseviers, M., Group, E.P., Outpatient antibiotic use in Europe and association with resistance: a cross-national database study (2005) Lancet, 365, pp. 579-587; Wang, P., Yuan, T., Hu, J., Tan, Y., Determination of cephalosporin antibiotics in water samples by optimised solid phase extraction and high performance liquid chromatography with ultraviolet detector (2011) Int. J. Environ. Anal. Chem., 91, pp. 1267-1281; Quesada-Molina, C., Garc�a-Campa�a, A.M., del Olmo-Iruela, M., Ion-paired extraction of cephalosporins in acetone prior to their analysis by capillary liquid chromatography in environmental water and meat samples (2013) Talanta, 115, pp. 943-949; Hue, T.T.T., Son, D.C., Lan, A.N.T., Anh, N.T.K., Phong, T.K., Hiramatsu, K., A simple and rapid method to measure residue of cefexime � a cephalosporin antibiotic in the wastewater of pharmaceutical production plant (2014) J. Faculty Agric. Khushu Univ., 59, pp. 169-175; Yu, X., Tang, X., Zuo, J., Zhang, M., Chen, L., Li, Z., Distribution and persistence of cephalosporins in cephalosporin producing wastewater using SPE and UPLC�MS/MS method (2016) Sci. Total Environ., 569, pp. 23-30; Massart, D.L., Handbook of Chemometrics and Qualimetrics (1997), Elsevier Beltsville, Maryland and Washington; Brereton, R.G., Introduction to multivariate calibration in analytical chemistry (2000) Analyst, 125, pp. 2125-2154; Despagne, F., Massart, D.L., Neural networks in multivariate calibration (1998) Analyst, 123, pp. 157R-178(R); Absalan, G., Soleimani, M., Simultaneous determination of aniline and cyclohexylamine by principal component artificial neural networks (2004) Anal. Sci., 20, pp. 879-882; Yehia, A.M., Mohamed, H.M., Chemometrics resolution and quantification power evaluation: application on pharmaceutical quaternary mixture of paracetamol, guaifenesin, phenylephrine and p-aminophenol (2016) Spectrochim. Acta A, 152, pp. 491-500; Yehia, A.M., Sami, I., Riad, S.A.M., El-Saharty, Y.S., Qualitative and quantitative chemometry as stability-indicating methods for determination of dantrolene sodium and paracetamol (2018) Curr. Pharm. Anal., 14, pp. 60-67; Guiberteau, A., D�az, T.G., C�ceres, M.I.R., Burguillos, J.M.O., Mer�s, I.D., L�pez, F.S., Polarography and artificial neural network for the simultaneous determination of nalidixic acid and its main metabolite (7-hydroxymethylnalidixic acid) (2004) Talanta, 62, pp. 357-365; Chen, Q., Zhao, J., Guo, Z., Wang, X., Determination of caffeine content and main catechins contents in green tea (Camellia sinensis L.) using taste sensor technique and multivariate calibration (2010) J. Food Compos. Anal., 23, pp. 353-358; Moghadam, M.R., Dadfarnia, S., Shabani, A.M.H., Shahbazikhah, P., Chemometric-assisted kinetic�spectrophotometric method for simultaneous determination of ascorbic acid, uric acid, and dopamine (2011) Anal. Biochem., 410, pp. 289-295; Abbaspour, A., Baramakeh, L., Application of principle component analysis�artificial neural network for simultaneous determination of zirconium and hafnium in real samples (2006) Spectrochim. Acta A, 64, pp. 477-482; Galera, M.M., Garc�a, M.G., Goicoechea, H., The application to wastewaters of chemometric approaches to handling problems of highly complex matrices (2007) TrAC Trends Anal. Chem., 26, pp. 1032-1042; Riad, S.M., Salem, H., Elbalkiny, H.T., Khattab, F.I., Validated univariate and multivariate spectrophotometric methods for the determination of pharmaceuticals mixture in complex wastewater (2015) Spectrochim. Acta A, 140, pp. 451-461; Mas, S., de Juan, A., Tauler, R., Olivieri, A.C., Escandar, G.M., Application of chemometric methods to environmental analysis of organic pollutants: a review (2010) Talanta, 80, pp. 1052-1067; Beebe, K.R., Pell, R.J., Seasholtz, M.B., Chemometrics: A Practical Guide (1998), Wiley New York; Antunes, M., Sim�o, J.J., Duarte, A., Tauler, R., Multivariate curve resolution of overlapping voltammetric peaks: quantitative analysis of binary and quaternary metal mixtures (2002) Analyst, 127, pp. 809-817; Pharmacopoeia, B., The Stationery Office on Behalf of the Medicines and Healthcare Products Regulatory Agency (MHRA)-� Crown Copyright (2013); Brereton, R.G., Chemometrics: Data Analysis for the Laboratory and Chemical Plant (2003), Wiley; David Duncan, F.H., Walker, M., EPA guide line: regulatory monitoring and testing (2007) Water and Wastewater Sampling, , E.P. Authority South Australia; Hemmateenejad, B., Akhond, M., Samari, F., A comparative study between PCR and PLS in simultaneous spectrophotometric determination of diphenylamine, aniline, and phenol: effect of wavelength selection (2007) Spectrochim. Acta A, 67, pp. 958-965; Riahi, S., Hadiloo, F., Milani, S.M.R., Davarkhah, N., Ganjali, M.R., Norouzi, P., Seyfi, P., A new technique for spectrophotometric determination of pseudoephedrine and guaifenesin in syrup and synthetic mixture (2011) Drug Test. Anal., 3, pp. 319-324; Windig, W., Guilment, J., Interactive self-modeling mixture analysis (1991) Anal. Chem., 63, pp. 1425-1432; Afkhami, A., Abbasi-Tarighat, M., Khanmohammadi, H., Simultaneous determination of Co 2+ , Ni 2+ , Cu 2+ and Zn 2+ ions in foodstuffs and vegetables with a new Schiff base using artificial neural networks (2009) Talanta, 77, pp. 995-1001; B. phamacopiea, The Stationery Office on Behalf of the Medicines and Healthcare Products Regulatory Agency (MHRA)-� Crown Copyright (2012)
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description: