Biomonitoring detoxification efficiency of an algal-bacterial microcosm system for treatment of coking wastewater: Harmonization between Chlorella vulgaris microalgae and wastewater microbiome
dc.Affiliation | October University for modern sciences and Arts (MSA) | |
dc.contributor.author | Hassan M. | |
dc.contributor.author | Essam T. | |
dc.contributor.author | Mira A. | |
dc.contributor.author | Megahed S. | |
dc.contributor.other | Department of Microbiology and Immunology | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | Cairo University | |
dc.contributor.other | Cairo | |
dc.contributor.other | Egypt; Department of Genomics and Health | |
dc.contributor.other | Center for Advanced Research in Public Health | |
dc.contributor.other | FISABIO FoundationValencia | |
dc.contributor.other | Spain; Department of Microbiology and Immunology | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | October University for Modern Sciences and Arts (MSA) | |
dc.contributor.other | Cairo | |
dc.contributor.other | Egypt | |
dc.date.accessioned | 2020-01-09T20:40:34Z | |
dc.date.available | 2020-01-09T20:40:34Z | |
dc.date.issued | 2019 | |
dc.description | Scopus | |
dc.description.abstract | Nowadays, due to worldwide water shortage, water utilities are forced to re-evaluate treated wastewater. Consequently, wastewater treatment plants need to conduct biomonitoring. Coking wastewater (CWW) has toxic, mutative and carcinogenic components with threatening effect on the environment. CWW was selected as a model for complex highly toxic industrial wastewater that should be treated. CWW from Egypt was treated in a nine-liter photobioreactor using an algal-bacterial system. The photobioreactor was operated for 154 days changing different parameters (toxic load and light duration) for optimization. Optimized conditions achieved significant reduction (45%) in the operation cost. The algal-bacterial system was monitored using chemical assays (chemical oxygen demand and phenol analysis), bioassays (phytotoxicity, Artemia-toxicity, cytotoxicity, algal-bacterial ratio and settleability) and Illumina-MiSeq sequencing of 16S rRNA gene. The algal-bacterial system detoxified (in terms of phytotoxicity, cytotoxicity and Artemia-toxicity) CWW introduced as influent through all phases. A significant difference was recorded in the microbial diversity between influent and effluent samples. Four phyla dominated influent samples; Proteobacteria (77%), Firmicutes (11%), Bacteroidetes (5%) and Deferribacteres (3%) compared to only two in effluent samples; Proteobacteria (66%) and Bacteroidetes (26%). The significant relative-abundance of versatile aromatic degraders (Comamonadaceae and Pseudomonadaceae families) in influent samples conformed to the nature of CWW. Microbial community shifted and promoted the activity of catabolically versatile and xenobiotics degrading families (Chitinophagaceae and Xanthomonadaceae). Co-culture of microalgae had a positive effect on the biodegrading bacteria that was reflected by enhanced treatment efficiency, significant increase in relative abundance of bacterial genera with cyanide-decomposing potential and negative effect on waterborne pathogens. � 2019 Elsevier B.V. | en_US |
dc.description.uri | https://www.scimagojr.com/journalsearch.php?q=25349&tip=sid&clean=0 | |
dc.identifier.doi | https://doi.org/10.1016/j.scitotenv.2019.04.304 | |
dc.identifier.doi | PubMed ID 31055095 | |
dc.identifier.issn | 489697 | |
dc.identifier.other | https://doi.org/10.1016/j.scitotenv.2019.04.304 | |
dc.identifier.other | PubMed ID 31055095 | |
dc.identifier.uri | https://t.ly/DXXXg | |
dc.language.iso | English | en_US |
dc.publisher | Elsevier B.V. | en_US |
dc.relation.ispartofseries | Science of the Total Environment | |
dc.relation.ispartofseries | 677 | |
dc.subject | Bioassay | en_US |
dc.subject | Biomarker | en_US |
dc.subject | Illumina-sequencing | en_US |
dc.subject | Metagenomics | en_US |
dc.subject | Microbial community | en_US |
dc.subject | Photobioreactor | en_US |
dc.subject | Algae | en_US |
dc.subject | Bioassay | en_US |
dc.subject | Biochemistry | en_US |
dc.subject | Biomarkers | en_US |
dc.subject | Chemical oxygen demand | en_US |
dc.subject | Cytotoxicity | en_US |
dc.subject | Detoxification | en_US |
dc.subject | Efficiency | en_US |
dc.subject | Microorganisms | en_US |
dc.subject | Photobioreactors | en_US |
dc.subject | RNA | en_US |
dc.subject | Toxicity | en_US |
dc.subject | Wastewater treatment | en_US |
dc.subject | Water supply | en_US |
dc.subject | Algal-bacterial systems | en_US |
dc.subject | Illumina | en_US |
dc.subject | Industrial wastewaters | en_US |
dc.subject | Metagenomics | en_US |
dc.subject | Microbial communities | en_US |
dc.subject | Photobiore-actor | en_US |
dc.subject | Wastewater treatment plants | en_US |
dc.subject | Water-borne pathogens | en_US |
dc.subject | Effluents | en_US |
dc.subject | bacterium | en_US |
dc.subject | bioassay | en_US |
dc.subject | biomarker | en_US |
dc.subject | biome | en_US |
dc.subject | biomonitoring | en_US |
dc.subject | bioreactor | en_US |
dc.subject | detoxification | en_US |
dc.subject | genomics | en_US |
dc.subject | microalga | en_US |
dc.subject | microbial community | en_US |
dc.subject | microcosm | en_US |
dc.subject | wastewater treatment | en_US |
dc.subject | Arcobacter | en_US |
dc.subject | Artemia | en_US |
dc.subject | Article | en_US |
dc.subject | bacterium | en_US |
dc.subject | Bacteroidetes | en_US |
dc.subject | biological monitoring | en_US |
dc.subject | bioremediation | en_US |
dc.subject | chemical oxygen demand | en_US |
dc.subject | Chitinophagaceae | en_US |
dc.subject | Chlorella vulgaris | en_US |
dc.subject | coculture | en_US |
dc.subject | coking industry | en_US |
dc.subject | Comamonadaceae | en_US |
dc.subject | cytotoxicity | en_US |
dc.subject | Deferribacteres | en_US |
dc.subject | detoxification | en_US |
dc.subject | effluent | en_US |
dc.subject | Egypt | en_US |
dc.subject | Firmicutes | en_US |
dc.subject | microbial community | en_US |
dc.subject | microbial diversity | en_US |
dc.subject | microcosm | en_US |
dc.subject | nonhuman | en_US |
dc.subject | phytotoxicity | en_US |
dc.subject | priority journal | en_US |
dc.subject | Proteobacteria | en_US |
dc.subject | Pseudomonadaceae | en_US |
dc.subject | waste water management | en_US |
dc.subject | Xanthomonadaceae | en_US |
dc.subject | analysis | en_US |
dc.subject | bacterium | en_US |
dc.subject | Chlorella vulgaris | en_US |
dc.subject | ecosystem restoration | en_US |
dc.subject | environmental monitoring | en_US |
dc.subject | metabolism | en_US |
dc.subject | microalga | en_US |
dc.subject | microbiology | en_US |
dc.subject | microflora | en_US |
dc.subject | prevention and control | en_US |
dc.subject | procedures | en_US |
dc.subject | waste water | en_US |
dc.subject | water pollutant | en_US |
dc.subject | water pollution | en_US |
dc.subject | algae | en_US |
dc.subject | Artemia | en_US |
dc.subject | Bacteria (microorganisms) | en_US |
dc.subject | Bacteroidetes | en_US |
dc.subject | Chlorella vulgaris | en_US |
dc.subject | Comamonadaceae | en_US |
dc.subject | Deferribacteres | en_US |
dc.subject | Firmicutes | en_US |
dc.subject | Proteobacteria | en_US |
dc.subject | Pseudomonadaceae | en_US |
dc.subject | Xanthomonadaceae | en_US |
dc.subject | coke | en_US |
dc.subject | Bacteria | en_US |
dc.subject | Chlorella vulgaris | en_US |
dc.subject | Coke | en_US |
dc.subject | Egypt | en_US |
dc.subject | Environmental Monitoring | en_US |
dc.subject | Environmental Restoration and Remediation | en_US |
dc.subject | Microalgae | en_US |
dc.subject | Microbiota | en_US |
dc.subject | Waste Water | en_US |
dc.subject | Water Pollutants, Chemical | en_US |
dc.subject | Water Pollution, Chemical | en_US |
dc.title | Biomonitoring detoxification efficiency of an algal-bacterial microcosm system for treatment of coking wastewater: Harmonization between Chlorella vulgaris microalgae and wastewater microbiome | en_US |
dc.type | Article | en_US |
dcterms.isReferencedBy | Aislabie, J.M., Balks, M.R., Foght, J.M., Waterhouse, E.J., Hydrocarbon spills on Antarctic soils: effects and management (2004) Environ Sci Technol, 38, pp. 1265-1274; Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., QIIME allows analysis of high-throughput community sequencing data (2010) Nat. Methods, 7, pp. 335-336; Carlos, F.S., Giovanella, P., Bavaresco, J., Borges, C., Camargo, F.A., A comparison of microbial bioaugmentation and biostimulation for hexavalent chromium removal from wastewater (2016) Water Air Soil Pollut., 227, pp. 175-182; Chen, X., Goh, Q.Y., Tan, W., Hossain, I., Chen, W.N., Lau, R., Lumostatic strategy for microalgae cultivation utilizing image analysis and chlorophyll a content as design parameters (2011) Bioresour. Technol., 102, pp. 6005-6012; Eaton, D.A., Clesceri, L.S., Greenberg, A.E., Franson, M.A.H., Standard Methods for the Examination of Water and Wastewater. I Washington, DC (1998), American Public Health Association; Essam, T., Amin, M.A., El Tayeb, O., Mattiasson, B., Guieysse, B., Biological treatment of industrial wastes in a photobioreactor (2006) Water Sci. Technol., 53, pp. 117-125; Essam, T., Amin, M.A., Tayeb, O.E., Mattiasson, B., Guieysse B. Solar-based physicochemical-biological processes for the treatment of toxic and recalcitrant effluents. PhD thesis. University of Lund (2006) Lund; Essam, T., Amin, M.A., Tayeb, O.E., Mattiasson, B., Guieysse, B., Kinetics and metabolic versatility of highly tolerant phenol degrading Alcaligenes strain TW1 (2010) J. Hazard. Mater., 173, pp. 783-788; Essam, T., ElRakaiby, M., Hashem, A., Photosynthetic based algal-bacterial combined treatment of mixtures of organic pollutants and CO 2 mitigation in a continuous photobioreactor (2013) World J. Microbiol. Biotechnol., 29, pp. 969-974; Gilbert, J.A., Jansson, J.K., Knight, R., The earth microbiome project: successes and aspirations (2014) BMC Biol., 12, p. 69; Gu, Y., Wei, Y., Xiang, Q., Zhao, K., Yu, X., Zhang, X., C:N ratio shaped both taxonomic and functional structure of microbial communities in livestock and poultry breeding wastewater treatment reactor (2019) Sci. Total Environ., 651, pp. 625-633; Guieysse, B., Borde, X., Mu�oz, R., Hatti-Kaul, R., Nugier-Chauvin, C., Patin, H., Influence of the initial composition of algal-bacterial microcosms on the degradation of salicylate in a fed-batch culture (2002) Biotechnol. Lett., 24, pp. 531-538; Guo, B., Liu, C., Gibson, C., Frigon, D., Wastewater microbial community structure and functional traits change over short timescales (2019) Sci. Total Environ., 662, pp. 779-785; Guti�rrez, R., Ferrer, I., Gonz�lez-Molina, A., Salvad�, H., Garc�a, J., Uggetti, E., Microalgae recycling improves biomass recovery from wastewater treatment high rate algal ponds (2016) Water Res., 106, pp. 539-549; Hanada, S., Sekiguchi, Y., (2014), pp. 677-681. , The phylum Gemmatimonadetes. The Prokaryotes 11. Heidelberg Springer, Thompson F Berlin; Hassan, M., Essam, T., Yassin, A., Salama, A., Screening of bio-surfactant production ability among organic pollutants degrading isolates collected from Egyptian environment (2014) J. Microb. Biochem. Technol., 6, pp. 195-201; Hassan, M., Essam, T., Megahed, S., Illumina sequencing and assessment of new cost-efficient protocol for metagenomic-DNA extraction from environmental water samples (2018) Braz. J. Microbiol., (49), pp. 1 1-1 8; Ismail, M.M., Hassan, M., Essam, T.M., Biological testing and toxicity bioassays in biodegradation: toward better process control (2018) Toxicity and Biodegradation Testing, pp. 185-205. , E.D. Bidoia R.N. Montagnolli Springer New York New York, NY; Jalowiecki, L., Chojniak, J.M., Dorgeloh, E., Hegedusova, B., Ejhed, H., Magn�r, J., Microbial community profiles in wastewaters from onsite wastewater treatment systems technology (2016) PLoS One, 11; Jiang, Y., Wei, L., Zhang, H., Yang, K., Wang, H., Removal performance and microbial communities in a sequencing batch reactor treating hypersaline phenol-laden wastewater (2016) Bioresour. Technol., 218, pp. 146-152; Klindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M., Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies (2013) Nucleic Acids Res., 41, pp. 11-15; Lee, J., Cho, D.-H., Ramanan, R., Kim, B.-H., Oh, H.-M., Kim, H.-S., Microalgae-associated bacteria play a key role in the flocculation of Chlorella vulgaris (2013) Bioresour. Technol., 131, pp. 195-201; L�pez-Serna, R., Posadas, E., Garc�a-Encina, P.A., Mu�oz, R., Removal of contaminants of emerging concern from urban wastewater in novel algal-bacterial photobioreactors (2019) Sci. Total Environ., 662, pp. 32-40; Mujtaba, G., Lee, K., Treatment of real wastewater using co-culture of immobilized Chlorella vulgaris and suspended activated sludge (2017) Water Res., 120, pp. 174-184; Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W.S., Metagenomic biomarker discovery and explanation (2011) Genome Biol., 12, pp. 60-66; Shi, S., Qu, Y., Ma, Q., Zhang, X., Zhou, J., Ma, F., Performance and microbial community dynamics in bioaugmented aerated filter reactor treating with coking wastewater (2015) Bioresour. Technol., 190, pp. 159-166; Trintinaglia, L., Bianchi, E., Silva, L.B., Nascimento, C.A., Spilki, F.R., Ziulkoski, A.L., Cytotoxicity assays as tools to assess water quality in the Sinos River basin (2015) Braz. J. Biol., 75, pp. 75-80; Vichai, V., Kirtikara, K., Sulforhodamine B colorimetric assay for cytotoxicity screening (2006) Nat. Protoc., 1, pp. 1112-1116; Wang, M., Yang, H., Ergas, S.J., van der Steen, P., A novel shortcut nitrogen removal process using an algal-bacterial consortium in a photo-sequencing batch reactor (PSBR) (2015) Water Res., 87, pp. 38-48; Wang, Z., Liu, L., Guo, F., Zhang, T., Deciphering cyanide-degrading potential of bacterial community associated with the coking wastewater treatment plant with a novel draft genome (2015) Microb. Ecol., 70, pp. 701-709; Wang, Y., Ho, S.-H., Cheng, C.-L., Guo, W.-Q., Nagarajan, D., Ren, N.-Q., Perspectives on the feasibility of using microalgae for industrial wastewater treatment (2016) Bioresour. Technol., 222, pp. 485-497; Wang, R., Ma, Q., Ye, X., Li, C., Zhao, Z., Preparing coal slurry from coking wastewater to achieve resource utilization: slurrying mechanism of coking wastewater�coal slurry (2019) Sci. Total Environ., 650, pp. 1678-1687; Webb, A.L., Taboada, E.N., Selinger, L.B., Boras, V.F., Inglis, G.D., Efficacy of wastewater treatment on Arcobacter butzleri density and strain diversity (2016) Water Res., 105, pp. 291-296; Wittebolle, L., Marzorati, M., Clement, L., Balloi, A., Daffonchio, D., Heylen, K., Initial community evenness favours functionality under selective stress (2009) Nature, 458, pp. 623-626; Zahedi, A., Gofton, A.W., Greay, T., Monis, P., Oskam, C., Ball, A., Profiling the diversity of Cryptosporidium species and genotypes in wastewater treatment plants in Australia using next generation sequencing (2018) Sci. Total Environ., 644, pp. 635-648; Zegura, B., Heath, E., Cernosa, A., Filipic, M., Combination of in vitro bioassays for the determination of cytotoxic and genotoxic potential of wastewater, surface water and drinking water samples (2009) Chemosphere, 75, pp. 1453-1460; Zhu, X., Tian, J., Liu, C., Chen, L., Composition and dynamics of microbial community in a zeolite biofilter-membrane bioreactor treating coking wastewater (2013) Appl. Microbiol. Biotechnol., 97, pp. 8767-8775; Zhu, S., Wu, H., Wei, C., Zhou, L., Xie, J., Contrasting microbial community composition and function perspective in sections of a full-scale coking wastewater treatment system (2016) Appl. Microbiol. Biotechnol., 100, pp. 949-960 | |
dcterms.source | Scopus |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- avatar_scholar_256.png
- Size:
- 6.31 KB
- Format:
- Portable Network Graphics
- Description: