IL-10 correlates with the expression of carboxypeptidase B2 and lymphovascular invasion in inflammatory breast cancer: the potential role of tumor infiltrated macrophages

Abstract

Background: Pro-carboxypeptidase B2 (pro-CPB2) or thrombin-activatable fibrinolysis inhibitor (TAFI) is a glycoprotein encoded by the CPB2 gene and deregulated in several cancer types, including breast cancer. Thrombin binding to thrombomodulin (TM), encoded by THBD, is important for TAFI activation. CPB2 gene expression is influenced by genetic polymorphism and cytokines such as interleukin 10 (IL-10). Our previous results showed that tumor infiltrating monocytes/macrophages (CD14+ /CD16+ ) isolated from inflammatory breast cancer (IBC) patients’ secrete high levels of IL-10. The aim of the present study is to test genetic polymorphism and expression of CPB2 in healthy breast tissues and carcinoma tissues of 2 non-IBC and IBC patients. Furthermore, to investigate whether IL-10 modulates the expression of CPB2 and THBD in vivo and in-vitro. Materials and methods We tested CPB2 Thr325Ile polymorphism using restriction fragment length polymorphism, (RFLP) technique in healthy and carcinoma breast tissues. The mRNA expression of CPB2, THBD and IL10 were assessed by RT-qPCR. Infiltration of CD14+ cells was assessed by immunohistochemistry. We investigated the correlation between infiltration of CD14+ cells and expression of IL10 and CPB2. Furthermore, we correlated IL10 expression with the expression of both CPB2 and THBD in breast carcinoma tissues. Finally, we validated the role of recombinant IL-10 in regulating the expression of CPB2 and THBD using different breast cancer cell lines. Results: Our data showed that CPB2 genotypes carrying the high-risk allele [Thr/Ile (CT) and Ile/Ile (TT)] were more frequent in both IBC and non-IBC patients compared to control group. CPB2 genotypes did not show any statistical correlation with CPB2 mRNA expression levels or patients’ clinical pathological properties. Interestingly, CPB2 and IL10 expression were significantly higher and positively correlated with the incidence of CD14+ cells in carcinoma tissues of IBC as compared to non-IBC. On the other hand, THBD expression was significantly lower in IBC carcinoma versus non-IBC tissues. Based on molecular subtypes, CPB2 and IL10 expression were significantly higher in triple negative (TN) as compared to hormonal positive (HP) carcinoma tissues of IBC. Moreover, CPB2 expression was positively correlated with presence of lymphovascular invasion and the expression of IL10 in carcinoma tissues of IBC patients. Furthermore, recombinant human IL-10 stimulated CPB2 expression in SUM-149 (IBC cell line) but not in MDA-MB-231 (non-IBC cell line), while there was no significant effect THBD expression. 3 Conclusion: Carcinoma tissues of IBC patients are characterized by higher expression of CPB2 and lower expression of THBD. Moreover, CPB2 positively correlates with IL10 mRNA expression, incidence of CD14+ cells and lymphovascular invasion in IBC patients. IL-10 stimulated CPB2 expression in TN-IBC cell line suggests a relevant role of CPB2 in the aggressive phenotype of IBC.

Description

MSA Google Scholar

Keywords

University of Inflammatory breast cancer, carboxypeptidase B2, thrombin-activatable fibrinolysis inhibitor, interleukin-10, thrombomodulin, macrophages, lymphovascular invasion.

Citation

1. Van Laere, S.J., G.G. Van den Eynden, I. Van der Auwera, M. Vandenberghe, P. van Dam, E.A. Van Marck, K.L. van Golen, P.B. Vermeulen, and L.Y. Dirix, Identification of cell-of-origin breast tumor subtypes in inflammatory breast cancer by gene expression profiling. Breast Cancer Res Treat, 2006. 95(3): p. 243-55. 2. Cristofanilli, M., A.U. Buzdar, and G.N. Hortobagyi, Update on the management of inflammatory breast cancer. Oncologist, 2003. 8(2): p. 141-8. 3. Van Laere, S., I. Van der Auwera, G.G. Van den Eynden, S.B. Fox, F. Bianchi, A.L. Harris, P. van Dam, E.A. Van Marck, P.B. Vermeulen, and L.Y. Dirix, Distinct molecular signature of inflammatory breast cancer by cDNA microarray analysis. Breast Cancer Res Treat, 2005. 93(3): p. 237-46. 4. Li, J., Y. Xia, Q. Wu, S. Zhu, C. Chen, W. Yang, W. Wei, and S. Sun, Outcomes of patients with inflammatory breast cancer by hormone receptor- and HER2-defined molecular subtypes: A population-based study from the SEER program. Oncotarget, 2017. 8(30): p. 49370-49379. 5. Oualla, K., H.M. El-Zawahry, B. Arun, J.M. Reuben, W.A. Woodward, H. Gamal ElDin, B. Lim, N. Mellas, N.T. Ueno, and T.M. Fouad, Novel therapeutic strategies in the treatment of triple-negative breast cancer. Ther Adv Med Oncol, 2017. 9(7): p. 493-511. 6. Pfeiffer, R.B., 3rd and W.H. Barber, Inflammatory breast cancer presenting with acute central venous thrombosis: a case report. Am Surg, 2002. 68(6): p. 579-81. 7. Kruger, S.J., Breast cancer presenting as subclavian/axillary deep vein thrombosis and upper limb lymphoedema. Ann R Coll Surg Engl, 2012. 94(2): p. e55-6. 8. Serra, R., G. Buffone, R. Montemurro, and S. de Franciscis, Axillary vein thrombosis as the first clinical manifestation of inflammatory breast cancer: report of a case. Surg Today, 2013. 43(1): p. 100-2. 9. Stein, P.D., A. Beemath, F.A. Meyers, E. Skaf, J. Sanchez, and R.E. Olson, Incidence of venous thromboembolism in patients hospitalized with cancer. Am J Med, 2006. 119(1): p. 60-8. 10. Timp, J.F., S.K. Braekkan, H.H. Versteeg, and S.C. Cannegieter, Epidemiology of cancer-associated venous thrombosis. Blood, 2013. 122(10): p. 1712-23. 11. Eichinger, S., V. Schonauer, A. Weltermann, E. Minar, C. Bialonczyk, M. Hirschl, B. Schneider, P. Quehenberger, and P.A. Kyrle, Thrombin-activatable fibrinolysis 20 inhibitor and the risk for recurrent venous thromboembolism. Blood, 2004. 103(10): p. 3773-6. 12. Bertina, R.M., N.H. van Tilburg, F. Haverkate, B.N. Bouma, P.A. von dem Borne, J.C. Meijers, W. Campbell, D. Eaton, D.F. Hendriks, and J.L. Willemse, Discovery of thrombin activatable fibrinolysis inhibitor (TAFI). J Thromb Haemost, 2006. 4(1): p. 256-7. 13. Guimaraes, A.H., M.M. Barrett-Bergshoeff, A. Gils, P.J. Declerck, and D.C. Rijken, Migration of the activation peptide of thrombin-activatable fibrinolysis inhibitor (TAFI) during SDS-polyacrylamide gel electrophoresis. J Thromb Haemost, 2004. 2(5): p. 780-4. 14. Bajzar, L., Thrombin activatable fibrinolysis inhibitor and an antifibrinolytic pathway. Arterioscler Thromb Vasc Biol, 2000. 20(12): p. 2511-8. 15. Hataji, O., O. Taguchi, E.C. Gabazza, H. Yuda, C.N. D'Alessandro-Gabazza, H. Fujimoto, Y. Nishii, T. Hayashi, K. Suzuki, and Y. Adachi, Increased circulating levels of thrombin-activatable fibrinolysis inhibitor in lung cancer patients. Am J Hematol, 2004. 76(3): p. 214-9. 16. Salman, T.D., L.; Arslan, C.; Koldaş, M.; Varol, U.; Oflazoğlu, U.; Küçükzeybek, Y.; Alacacıoğlu, A.; Yılmaz, U., Thrombin activatable fibrinolysis inhibitor (TAFI), tissue factor pathway inhibitor (TFPI), and prothrombin fragment 1+2 levels in patients with advanced colorectal cancer. Acta Oncol Tur., 2016. 49(1): p. 6-12. 17. Kaftan, O., B. Kasapoglu, M. Koroglu, A. Kosar, and S.K. Yalcin, Thrombinactivatable fibrinolysis inhibitor in breast cancer patients. Med Princ Pract, 2011. 20(4): p. 332-5. 18. Chengwei, X., M. Xiaoli, Z. Yuan, P. Li, W. Shengjiang, Y. Chao, and W. Yunshan, Plasma thrombin-activatable fibrinolysis inhibitor levels and its Thr325Ile polymorphism in breast cancer. Blood Coagul Fibrinolysis, 2013. 24(7): p. 698-703. 19. Fawzy, M.S., E.A. Mohammed, A.S. Ahmed, and A. Fakhr-Eldeen, Thrombinactivatable fibrinolysis inhibitor Thr325Ile polymorphism and plasma level in breast cancer: A pilot study. Meta Gene, 2015. 4: p. 73-84. 20. Esmon, C.T., The regulation of natural anticoagulant pathways. Science, 1987. 235(4794): p. 1348-52. 21. Kao, Y.C., L.W. Wu, C.S. Shi, C.H. Chu, C.W. Huang, C.P. Kuo, H.M. Sheu, G.Y. Shi, and H.L. Wu, Downregulation of thrombomodulin, a novel target of Snail, 21 induces tumorigenesis through epithelial-mesenchymal transition. Mol Cell Biol, 2010. 30(20): p. 4767-85. 22. ten Cate, H. and A. Falanga, Overview of the postulated mechanisms linking cancer and thrombosis. Pathophysiol Haemost Thromb, 2008. 36(3-4): p. 122-30. 23. Horowitz, N.A. and J.S. Palumbo, Mechanisms coupling thrombomodulin to tumor dissemination. Thromb Res, 2012. 129 Suppl 1: p. S119-21. 24. Zhang, Y., H. Weiler-Guettler, J. Chen, O. Wilhelm, Y. Deng, F. Qiu, K. Nakagawa, M. Klevesath, S. Wilhelm, H. Bohrer, M. Nakagawa, H. Graeff, E. Martin, D.M. Stern, R.D. Rosenberg, R. Ziegler, and P.P. Nawroth, Thrombomodulin modulates growth of tumor cells independent of its anticoagulant activity. J Clin Invest, 1998. 101(7): p. 1301-9. 25. Koutsi, A., A. Papapanagiotou, and A.G. Papavassiliou, Thrombomodulin: from haemostasis to inflammation and tumourigenesis. Int J Biochem Cell Biol, 2008. 40(9): p. 1669-73. 26. Ogawa, H., S. Yonezawa, I. Maruyama, Y. Matsushita, Y. Tezuka, H. Toyoyama, M. Yanagi, H. Matsumoto, H. Nishijima, T. Shimotakahara, T. Aikou, and E. Sato, Expression of thrombomodulin in squamous cell carcinoma of the lung: its relationship to lymph node metastasis and prognosis of the patients. Cancer Lett, 2000. 149(1-2): p. 95-103. 27. Hanly, A.M., M. Redmond, D.C. Winter, S. Brophy, J.M. Deasy, D.J. BouchierHayes, and E.W. Kay, Thrombomodulin expression in colorectal carcinoma is protective and correlates with survival. Br J Cancer, 2006. 94(9): p. 1320-5. 28. Hanly, A.M., A. Hayanga, D.C. Winter, and D.J. Bouchier-Hayes, Thrombomodulin: tumour biology and prognostic implications. Eur J Surg Oncol, 2005. 31(3): p. 217- 20. 29. Horowitz, N.A., E.A. Blevins, W.M. Miller, A.R. Perry, K.E. Talmage, E.S. Mullins, M.J. Flick, K.C. Queiroz, K. Shi, and C.A. Spek, Thrombomodulin is a determinant of metastasis through a mechanism linked to the thrombin binding domain but not the lectin-like domain. Blood, 2011. 118. 30. Bazzi, Z.A., D. Lanoue, M. El-Youssef, R. Romagnuolo, J. Tubman, D. CavalloMedved, L.A. Porter, and M.B. Boffa, Activated thrombin-activatable fibrinolysis inhibitor (TAFIa) attenuates breast cancer cell metastatic behaviors through inhibition of plasminogen activation and extracellular proteolysis. BMC cancer, 2016. 16: p. 328. 22 31. Kundu, N., T.L. Beaty, M.J. Jackson, and A.M. Fulton, Antimetastatic and antitumor activities of interleukin 10 in a murine model of breast cancer. J Natl Cancer Inst, 1996. 88(8): p. 536-41. 32. Hamidullah, B. Changkija, and R. Konwar, Role of interleukin-10 in breast cancer. Breast Cancer Res Treat, 2012. 133(1): p. 11-21. 33. Kozlowski, L., I. Zakrzewska, P. Tokajuk, and M.Z. Wojtukiewicz, Concentration of interleukin-6 (IL-6), interleukin-8 (IL-8) and interleukin-10 (IL-10) in blood serum of breast cancer patients. Rocz Akad Med Bialymst, 2003. 48: p. 82-4. 34. Llanes-Fernandez, L., R.I. Alvarez-Goyanes, C. Arango-Prado Mdel, J.M. AlcocerGonzalez, J.C. Mojarrieta, X.E. Perez, M.O. Lopez, S.F. Odio, R. CamachoRodriguez, M.E. Guerra-Yi, V. Madrid-Marina, R. Tamez-Guerra, and C. RodriguezPadilla, Relationship between IL-10 and tumor markers in breast cancer patients. Breast, 2006. 15(4): p. 482-9. 35. Fouad, T.M., T. Kogawa, J.M. Reuben, and N.T. Ueno, The role of inflammation in inflammatory breast cancer. Adv Exp Med Biol, 2014. 816: p. 53-73. 36. Mohamed, M.M., Al-Raawi, D., Sabet, S.F., El-Shinawi, M. , Inflammatory breast cancer: new factors contribute to disease etiology (Review). Journal of Advanced Research, 2014. 5(5): p. 525–536. 37. Sabet, S., S.K. El-Sayed, H.T. Mohamed, M. El-Shinawi, and M.M. Mohamed, Inflammatory breast cancer: High incidence of GCC haplotypes (-1082A/G, -819T/C, and -592A/C) in the interleukin-10 gene promoter correlates with over-expression of interleukin-10 in patients' carcinoma tissues. Tumour Biol, 2017. 39(7): p. 1010428317713393. 38. Komnenov, D., C.A. Scipione, Z.A. Bazzi, J.J. Garabon, M.L. Koschinsky, and M.B. Boffa, Pro-inflammatory cytokines reduce human TAFI expression via tristetraprolinmediated mRNA destabilisation and decreased binding of HuR. Thromb Haemost, 2015. 114(2): p. 337-49. 39. Nouh, M.A., M.M. Mohamed, M. El-Shinawi, M.A. Shaalan, D. Cavallo-Medved, H.M. Khaled, and B.F. Sloane, Cathepsin B: a potential prognostic marker for inflammatory breast cancer. J Transl Med, 2011. 9: p. 1. 40. Zainab A. Bazzi, D.L., Mouhanned El-Youssef, Rocco Romagnuolo, Janice Tubman, Dora Cavallo-Medved, Lisa A. Porter and Michael B. Boffa, Activated thrombinactivatable fibrinolysis inhibitor (TAFIa) attenuates breast cancer cell metastatic 23 behaviors through inhibition of plasminogen activation and extracellular proteolysis. BMC cancer, 2016. 328(16). 41. Liebertz, D.J., M.G. Lechner, R. Masood, U.K. Sinha, J. Han, R.K. Puri, A.J. Correa, and A.L. Epstein, Establishment and Characterization of a Novel Head and Neck Squamous Cell Carcinoma Cell Line USC-HN1. Head & Neck Oncology, 2010. 2(1): p. 5. 42. Boffa, J.H.H.L.M.G.B.Z.S.L.S.C.S.M.L.K.a.M.B., Identification of human thrombinactivatable fibrinolysis inhibitor in vascular and inflammatory cells Blood Coagulation, Fibrinolysis and Cellular Haemostasis, 2011. 105: p. 11. 43. Ibrahim, S.A., R. Gadalla, E.A. El-Ghonaimy, O. Samir, H.T. Mohamed, H. Hassan, B. Greve, M. El-Shinawi, M.M. Mohamed, and M. Gotte, Syndecan-1 is a novel molecular marker for triple negative inflammatory breast cancer and modulates the cancer stem cell phenotype via the IL-6/STAT3, Notch and EGFR signaling pathways. Mol Cancer, 2017. 16(1): p. 57. 44. El-Shinawi, M., H.T. Mohamed, E.A. El-Ghonaimy, M. Tantawy, A. Younis, R.J. Schneider, and M.M. Mohamed, Human cytomegalovirus infection enhances NFkappaB/p65 signaling in inflammatory breast cancer patients. PLoS One, 2013. 8(2): p. e55755. 45. El-Ghonaimy, E.A., S.A. Ibrahim, A. Youns, Z. Hussein, M.A. Nouh, T. ElMamlouk, M. El-Shinawi, and M.M. Mohamed, Secretome of tumor-associated leukocytes augment epithelial-mesenchymal transition in positive lymph node breast cancer patients via activation of EGFR/Tyr845 and NF-kappaB/p65 signaling pathway. Tumour Biol, 2016. 37(9): p. 12441-12453. 46. Mohamed, M.M., Monocytes conditioned media stimulate fibronectin expression and spreading of inflammatory breast cancer cells in three-dimensional culture: A mechanism mediated by IL-8 signaling pathway. Cell Commun Signal, 2012. 10(1): p. 3. 47. Sole, X., Guino, E., Valls, J., Iniesta, R., Moreno, V., SNPStats: a web tool for the analysis of association studies. Bioinformatics, 2006. 22: p. 2. 48. Andersen, S.W., A. Trentham-Dietz, J.D. Figueroa, L.J. Titus, Q. Cai, J. Long, J.M. Hampton, K.M. Egan, and P.A. Newcomb, Breast cancer susceptibility associated with rs1219648 (fibroblast growth factor receptor 2) and postmenopausal hormone therapy use in a population-based United States study. Menopause, 2013. 20(3): p. 354-8. 24 49. El-Shinawi, M., H.T. Mohamed, H.H. Abdel-Fattah, S.A. Ibrahim, M.S. ElHalawany, M.A. Nouh, R.J. Schneider, and M.M. Mohamed, Inflammatory and Noninflammatory Breast Cancer: A Potential Role for Detection of Multiple Viral DNAs in Disease Progression. Ann Surg Oncol, 2016. 23(2): p. 494-502. 50. Mohamed, M.M., E.A. El-Ghonaimy, M.A. Nouh, R.J. Schneider, B.F. Sloane, and M. El-Shinawi, Cytokines secreted by macrophages isolated from tumor microenvironment of inflammatory breast cancer patients possess chemotactic properties. Int J Biochem Cell Biol, 2014. 46: p. 138-47. 51. Lara-Medina, F., V. Perez-Sanchez, D. Saavedra-Perez, M. Blake-Cerda, C. Arce, D. Motola-Kuba, C. Villarreal-Garza, A.M. Gonzalez-Angulo, E. Bargallo, J.L. Aguilar, A. Mohar, and O. Arrieta, Triple-negative breast cancer in Hispanic patients: high prevalence, poor prognosis, and association with menopausal status, body mass index, and parity. Cancer, 2011. 117(16): p. 3658-69. 52. Garand, M.L., Joellen H.H.; Zagorac, Branislava; Koschinsky, Marlys L.; Boffa, Michael B, Regulation of the gene encoding human thrombin-activatable fibrinolysis inhibitor by estrogen and progesterone. Blood Coagulation & Fibrinolysis, 2013. 24(4): p. 12. 53. Mosnier, L.O., J.C. Meijers, and B.N. Bouma, Regulation of fibrinolysis in plasma by TAFI and protein C is dependent on the concentration of thrombomodulin. Thromb Haemost, 2001. 85(1): p. 5-11. 54. Chun-Te Wu, Y.-H.C., Paul- Yang Lin, Wen-Cheng Chen and Miao-Fen Chen, Thrombomodulin expression regulates tumorigenesis in bladder cancer. BMC cancer, 2014. 375(14). 55. Menschikowski, M., A. Hagelgans, O. Tiebel, M. Vogel, G. Eisenhofer, and G. Siegert, Regulation of thrombomodulin expression in prostate cancer cells. Cancer Lett, 2012. 322(2): p. 177-84. 56. Chavey, C., F. Bibeau, S. Gourgou-Bourgade, S. Burlinchon, F. Boissiere, D. Laune, S. Roques, and G. Lazennec, Oestrogen receptor negative breast cancers exhibit high cytokine content. Breast Cancer Res, 2007. 9(1): p. R15. 57. Allen, S.G., Y.C. Chen, J.M. Madden, C.L. Fournier, M.A. Altemus, A.B. Hiziroglu, Y.H. Cheng, Z.F. Wu, L. Bao, J.A. Yates, E. Yoon, and S.D. Merajver, Macrophages Enhance Migration in Inflammatory Breast Cancer Cells via RhoC GTPase Signaling. Sci Rep, 2016. 6: p. 39190.

Full Text link