Behavior of Tunisian Local Barley Accessions Under Progressive Water Deficit: Physiological and Biochemical Approaches

Loading...
Thumbnail Image

Date

2010

Journal Title

Journal ISSN

Volume Title

Type

Article

Publisher

Journal of Phytology

Series Info

Journal of Phytology;2010, 2(11): 88-97

Doi

Scientific Journal Rankings

Abstract

Leaf water potential, percentage of membrane integrity and pigments chlorophyll content provide information on plant water status, on cell membranes integrity and on its photosynthetic capacity particularly under water stress conditions. These parameters were used to differentiate the behavior of 14 local barley accessions subjected to various intensities of stress (one week, two weeks and three weeks). The Principal Component Analysis (PCA) of the collected data at the end of each week revealed that the accessions behavior varies with the water deficit period. In fact, some are tolerant during the first and/or second week of stress and subsequently they are affected with a very substantial reduction in their chlorophyll pigments and their percentage of membrane integrity after three weeks. Others appear to be sensitive during the first week of stress and became tolerant under severe stress. This tolerance is manifested by the maintenance of membrane integrity, high content of chlorophyll pigments, significant proline accumulation and important specific activity of peroxidases. The study also showed that the 14 accessions exhibit two behavior types: i) significant decrease in leaf water potential with proline accumulation (constitutive osmotic adjustment) to keep cells turgid and ii) trivial drop of leaf water potential (osmotic adjustment of adaptive type). Moreover, variability in the different accessions behavior to water deficit seems to be linked to their geographical origin especially that supposed tolerant accessions are mostly from South and Central Tunisia characterized by severe aridity.

Description

MSA Google Scholar

Keywords

Barley, water stress, behavior, accessions, Tunisia

Citation

Aidaoui A., 1994. - Etude du déficit hydrique séquentiel sur les rendements, application au cas du sorghograin. Soghum tricol moench, Thèse de Doctorat en Science de l’eau. Ecole Nationale du Génie Rural des Eaux et Forêts, Montpellier, France. 127 p. Al Hakimi A. & Monneveux. P., 1993. - Morphophysiological traits related to drought tolerance in primitive wheat species. In: Biodiversity and wheat improvement, DamaniaA.B (Eds). John Wiley and sons, Chichester UK, pp. 199- 216. Aouad A., 1997. -Contribution à l’étude des peroxydases des céréales en relation avec la résistance à la salinité. Thèse de 3ème cycle, Université Cadi Ayad, Marrakech (Maroc), 198p. Arnon D.I., 1949. - Coper enzymes in isolated chloroplasts. Plant Physiol. 24: 1-15. Ben Naceur M., 1994. - Contribution à l’évaluation du degré de résistance aux contraintes hydriques (Sécheresse et excès d’eau) chez l’orge (Hordeum vulgare L) et la Fétuque (Festuca arundinacea Schreb.). Thèse de doctorat en Sciences Agronomiques. Fac. Des Sci. Agro. Gembloux-Belgique, 118p. Ben Salem M., 1993. - Etude comparative de l’adaptation à la sécheresse du blé, de l’orge et du triticale. Ed. INRA, Paris, Colloques. 64: 276-297. Bergareche C., Lusia J., Febrero, A., Bort, J. & Araus, J.L., 1993. - Effect of water stress on proline and nitrate content of barley relationships with osmotical potential, carbon isotope ratio and grain yield. Colloque Diversité génétique et amélioration variétale, Montpellier (France), 15-17 décembre 1992. Les colloques, n°64. Paris: INRA éditions, 1993. Bohnert H.J. & Jensen, R.G., 1996. -Strategies for engineering water-stress tolerance in plants. Trends Biotech. 14: 89-97. Brian K.K., Helle, B., & Søren, K.R., 1999. - Barley Coleoptile Peroxidases. Purification, Molecular Cloning, and Induction by Pathogens. Plant Physiol. 120: 501-512. Chaves M.M., Pereira, J.S., Maroco, J.P., Rodrigues, M.L., Ricardo, C.P.P., Osório, M.L., Carvalho, I., Faria, T., Pinheiro, C., 2002. - How plants cope with water stress in the field: photosynthesis and growth. Annals of Botany. 89: 907-916. Chaves M.M., Maroco, J.P. & Pereira, J.S., 2003. - Understanding plant response to drought: from genes to the whole plant. Functional Plant Biology. 30: 239-264. Chimenti C.A., Pearson, J. & Hale, A.J., 2002. - Osmotic adjustment yield maintenance under drought in sun flower. Field crop Ress. 10: 235-246. Gharti-Chhetri G.B. & Lales, J.S., 1990. - Biochemical and physiological responses of nine spring wheat (Triticum aestivum) cultivars to drought stress at reproductive stage in the tropic. Belg. J. Bot. 123 (1/2): 27-35. Hare P.D., Cress, W.A. & Van Staden, J., 1998. - Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ. 21: 535-553. Harinasut P., Supaporn, S., Siriporn, P. & Charoensatapor, R., 2000. - Mechanisms of Adaptation to Increasing Salinity of Mulberry: Proline Content and Ascorbate Peroxidase Activity in Leaves of Multiple Shoots. Science Asia. 26: 207-211. Hsissou D., 1994. - Sélection in vitro et caractérisation de mutants de blé dur tolérants à la sécheresse. Thèse de doctorat, faculté des sciences, université catholique de Louvain, 167p. Iannucci A., Rascio, A., Russo, M., DiFonzo, N. & Martiniello, P., 2000. - Physiological responses to water stress following a conditioning period in berseem clover. Plant Soil. 223: 217-227. Khales A. & Baaziz, M., 2005. - Quantitative and qualitative aspects of peroxydases extracted from cladodes of opuntia ficus indica L. Sientia Horticulturae. 103: 209- 218. Kocheva K. & Georgiev, G., 2003. - Evaluation of the reaction of two contrasting Barley (Hordeum vulgare L.) cultivars in response to osmotic stress with PEG 6000. Bulg. J. Plant Physiol Special issue, 290-294. Ladjal M., Epron, D. & Ducrey, M., 2000. Effects of drought preconditioning on thermo tolerance of photosystem II and susceptibility of photosynthesis to heat stress in cider seedling. Tree physiol. 20: 1235-1241. Levitt J., 1980. - Responses of Plants to Environmental Stresses, second ed., Water Relation, Salt and other Stresses, vol. II, Academic Press, New York, 606 p. Liu H.P.; Dong, B.H., Zhang, Y.Y., Liu, Z.P. & Liu, Y.L., 2004. - Relationship between osmotic stress and the levels of free, conjugated and bound polyamines in leaves of wheat seedlings. Plant Sci. 166: 1261-1267. López-Huertas,, E., Sandalio, L.M., Gómez, M.& del Río, L.A., 1997. - Superoxide radical generation in peroxisomal membranes: evidence for the participation of the 18 kDa integral membrane polypeptide. Free Radical Res. 26: 497-506. Monneveux P. & Nemmar, M., 1986. Contribution à l’étude de la résistance à la sécheresse chez le blé tendre (Triticum aestivum L) et chez le blé dur (Triticum durum L) développement. Agronomie. 6: 583-590. Moran J.F., Becana, M., Iturbe-Ormaetne, I., Frechilla, S.,Klucas, R.V. & Apavicio-Tejo, P., 1994. - Drought induces oxidative stress in pea plants. Planta. 194: 346-352. Neelam M. & Ajay, G., 2005. - Effect of salt stress on proline metabolism in two high yielding genotypes of green gram. Plant science. 169: 331-339. Niedzwiedz-Siegien I., Bogatek-Leszczynska, R., Côme, D. & Corbineau, F., 2004. - Effects of drying rate on dehydration sensitivity of excised wheat seedling shoots as related to sucrose metabolism and antioxidant enzyme activities. Plant Sci. 167: 879-888. Passioura J.B., 1997. - Drought and drought tolerance. Plant Growth Regulation. 20: 79- 83. Turner N.C., 1986. - Adaptation to water deficit: a changing perspective. Aust. J. Plant Physiol. 13:175-190. Scholander P., Hammel, H., Bradstreet, E. & Hemmingsen, E., 1965. Sap pressure in vascular plants. Sciences. 148: 339-346. Slama A., 2002.- Étude comparative de la contribution des différentes parties du plant du blé dur dans la contribution du rendement en grains en irrigué et en conditions de déficit hydrique. Thèse de doctorat en biologie, Faculté des Sciences de Tunis, 204p. SPSS., 2002: Inc. Systat, version 11.5. SPSS Inc., Chicago, IL. Thomas W.T.B., 2003. -Prospects for molecular breeding of barley. Annals of Applied Biology 142: 1-12. Vallejos C.E., 1983.- Enzyme activity staining. S. D. Tanksley T. J. Orton Isozymes in plant genetics and breeding, part A, 469- 516. Elsevier Amsterdam, Netherlands. Virgona J.M. & Barlow, W.R., 1991. - Drought stress induces changes in the non structural carbohydrates composition of wheat stems. Aust. J. Plant Physiol. 18: 239-247. Wang W.X., Vinocur, B., Altman, A., 2003. - Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta. 218:1-14.