Derivative constant wavelength synchronous fluorescence spectrometry for the simultaneous detection of cefadrine and cefadroxil in water samples

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorElbalkiny H.T.
dc.contributor.authorYehia A.M.
dc.contributor.authorRiad S.M.
dc.contributor.authorElsaharty Y.S.
dc.contributor.otherAnalytical Chemistry Department
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherOctober University for Modern Sciences and Arts (MSA)
dc.contributor.other6th October City
dc.contributor.other11787
dc.contributor.otherEgypt; Analytical Chemistry Department
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherCairo University
dc.contributor.otherKasr-El Aini 13 Street
dc.contributor.otherCairo
dc.contributor.other11562
dc.contributor.otherEgypt; Chemistry Department
dc.contributor.otherSchool of Pharmacy and Pharmaceutical Industries
dc.contributor.otherBadr University in Cairo
dc.contributor.otherBadr City
dc.contributor.otherCairo 11829
dc.contributor.otherEgypt
dc.date.accessioned2020-01-09T20:40:28Z
dc.date.available2020-01-09T20:40:28Z
dc.date.issued2020
dc.descriptionScopus
dc.description.abstractA sensitive accurate spectrofluorimetric technique was developed to detect cefadroxil and cefradine traces in water samples simultaneously, by applying a procedure based on the formation of hydrolysis products corresponding to these compounds by sodium hydroxide (1 N NaOH) treatment. The conventional and the synchronous fluorescence spectra of these hydrolyzed products were totally overlapped making resolving of this mixture impossible. The second-derivative constant-wavelength synchronous fluorescence spectra allowed their detection simultaneously in a single scan after experimental conditions optimization, which was measured at 390 nm and 379 nm for cefadroxil and cefradine, respectively at ?? = 30.0. The calibration curves between derivative synchronous fluorescence intensity and drugs concentration showed suitable linear correlation in the range of 0.1 to 5 ?g.mL? 1 for cefadroxil and 0.5�10 ?g.mL? 1 for cefradine. The proposed fluorimetric method is superior in being simple, environmental friendly and cost effective in comparison to the previously published reported methods. � 2019 Elsevier B.V.en_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=24530&tip=sid&clean=0
dc.identifier.doihttps://doi.org/10.1016/j.saa.2019.117903
dc.identifier.doiPubMed ID :
dc.identifier.issn13861425
dc.identifier.otherhttps://doi.org/10.1016/j.saa.2019.117903
dc.identifier.otherPubMed ID :
dc.identifier.urihttps://t.ly/veGEb
dc.language.isoEnglishen_US
dc.publisherElsevier B.V.en_US
dc.relation.ispartofseriesSpectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy
dc.relation.ispartofseries229
dc.subjectCefadroxilen_US
dc.subjectCefradine and water samplesen_US
dc.subjectDerivative synchronous spectrofluorimetryen_US
dc.subjectCost effectivenessen_US
dc.subjectFluorescence spectroscopyen_US
dc.subjectHydrolysisen_US
dc.subjectSodium hydroxideen_US
dc.subjectCefadroxilen_US
dc.subjectEnvironmental-friendlyen_US
dc.subjectExperimental conditionsen_US
dc.subjectHydrolysis productsen_US
dc.subjectSimultaneous detectionen_US
dc.subjectSpectrofluorimetryen_US
dc.subjectSynchronous fluorescenceen_US
dc.subjectWater samplesen_US
dc.subjectFluorescenceen_US
dc.titleDerivative constant wavelength synchronous fluorescence spectrometry for the simultaneous detection of cefadrine and cefadroxil in water samplesen_US
dc.typeArticleen_US
dcterms.isReferencedByPetrovi?, M., �krbi?, B., �ivan?ev, J., Ferrando-Climent, L., Barcelo, D., Determination of 81 pharmaceutical drugs by high performance liquid chromatography coupled to mass spectrometry with hybrid triple quadrupole�linear ion trap in different types of water in Serbia (2014) Sci. Total Environ., 468, pp. 415-428; Wang, J., Mao, D., Mu, Q., Luo, Y., Fate and proliferation of typical antibiotic resistance genes in five full-scale pharmaceutical wastewater treatment plants (2015) Sci. Total Environ., 526, pp. 366-373; Okeke, I.N., Laxminarayan, R., Bhutta, Z.A., Duse, A.G., Jenkins, P., O'Brien, T.F., Pablos-Mendez, A., Klugman, K.P., Antimicrobial resistance in developing countries. Part I: recent trends and current status (2005) Lancet Infect. Dis., 5, pp. 481-493; Harris, S.J., Cormican, M., Cummins, E., Antimicrobial residues and antimicrobial-resistant bacteria: impact on the microbial environment and risk to human health�a review (2012) Hum. Ecol. Risk Assess., 18, pp. 767-809; K�mmerer, K., Antibiotics in the aquatic environment�a review�part I (2009) Chemosphere, 75, pp. 417-434; Ferech, M., Coenen, S., Malhotra-Kumar, S., Dvorakova, K., Hendrickx, E., Suetens, C., Goossens, H., European Surveillance of Antimicrobial Consumption (ESAC): outpatient antibiotic use in Europe (2006) J. Antimicrob. Chemother., 58, pp. 401-407; Goossens, H., Ferech, M., Vander Stichele, R., Elseviers, M., E.P. Group, Outpatient antibiotic use in Europe and association with resistance: a cross-national database study (2005) Lancet, 365, pp. 579-587; Opri?, O., Coman, V., Copaciu, F., Vlassa, M., Solid phase extraction and high-performance thin-layer chromatography quantification of some antibiotics from surface waters (2012) JPC J. Planar Chromatogr. - Mod. TLC, 25, pp. 516-522; Quesada-Molina, C., Garc�a-Campa�a, A.M., del Olmo-Iruela, M., Ion-paired extraction of cephalosporins in acetone prior to their analysis by capillary liquid chromatography in environmental water and meat samples (2013) Talanta, 115, pp. 943-949; Wang, P., Yuan, T., Hu, J., Tan, Y., Determination of cephalosporin antibiotics in water samples by optimised solid phase extraction and high performance liquid chromatography with ultraviolet detector (2011) Int. J. Environ. Anal. Chem., 91, pp. 1267-1281; Qureshi, T., Memon, N., Memon, S.Q., Abro, K., Shah, S.W., LC/UV determination of cefradine, cefuroxime, and cefotaxime in dairy milk, human serum and wastewater samples (2013) SpringerPlus, 2, p. 575; Yu, X., Tang, X., Zuo, J., Zhang, M., Chen, L., Li, Z., Distribution and persistence of cephalosporins in cephalosporin producing wastewater using SPE and UPLC�MS/MS method (2016) Sci. Total Environ., 569, pp. 23-30; Elbalkiny, H.T., Yehia, A.M., Safa'a, M.R., Elsaharty, Y.S., Removal and tracing of cephalosporins in industrial wastewater by SPE-HPLC: optimization of adsorption kinetics on mesoporous silica nanoparticles (2019) J. Anal. Sci. Technol., 10, p. 21; Yehia, A.M., Elbalkiny, H.T., Safa'a, M.R., Elsaharty, Y.S., Chemometrics for resolving spectral data of cephalosporines and tracing their residue in waste water samples (2019) Spectrochim. Acta Part A, 219, pp. 436-443; Nevado, J.B., Pulgar�n, J.M., Escudero, O.R., Determination of procaine and tetracaine in cocaine samples by variable-angle synchronous fluorimetry (2000) Appl. Spectrosc., 54, pp. 1678-1683; Patra, D., Mishra, A., Recent developments in multi-component synchronous fluorescence scan analysis (2002) TrAC, Trends Anal. Chem., 21, pp. 787-798; El-ghobashy, M.R., Yehia, A.M., Helmy, A.H., Youssef, N.F., Application of normal fluorescence and stability-indicating derivative synchronous fluorescence spectroscopy for the determination of gliquidone in presence of its fluorescent alkaline degradation product (2018) Spectrochim. Acta Part A, 188, pp. 619-625; Arafa, R.M., Yehia, A.M., Abbas, S.S., Amer, S.M., Exploiting steroid�cyclodextrin complexes for selective determination of Estradiol Valerate and Norethisterone Acetate by synchronous fluorescence spectrofluorimetry (2019) Spectrochim. Acta Part A, , 117237; Izquierdo, P., Gutierrez, M., Gomez-Hens, A., Perez-Bendito, D., Simultaneous determination of cephradine and cephalexin in serum by derivative synchronous fluorescence spectroscopy (1990) Anal. Lett., 23, pp. 487-505; Jinghe, Y., Guangjun, Z., Nianqin, J., Rongjiang, H., Cunguo, L., Jingtian, H., Simultaneous determination of cephalexin and cefadroxil by using the coupling technique of synchronous fluorimetry and H-point standard additions method (1996) Anal. Chim. Acta, 325, pp. 195-200; Yang, J., Zhou, G., Cao, X., Ma, Q., Dong, J., Study on the fluorescence characteristics of alkaline degradation of cefadroxil, cephradine, cefotaximum sodium and amoxicillini (1998) Anal. Lett., 31, pp. 1047-1060; (2013), B. phamacopiea, The Stationery Office on behalf of the Medicines and Healthcare products Regulatory Agency (MHRA)-� Crown Copyright; David Duncan, F.H., Walker, M., (2007) EPA
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
avatar_scholar_128.png
Size:
2.73 KB
Format:
Portable Network Graphics
Description: