Production of flavonoids in callus cultures of Iphiona mucronata, Astraceae

Thumbnail Image

Date

2008

Journal Title

Journal ISSN

Volume Title

Type

Article

Publisher

Journal of Biomedical Science

Series Info

Journal of Biomedical Science;Volume: 28 Pages: 142-150

Abstract

Different callus cultures of Iphiona mucronata were established using seedling explants and Murashige & Skoog media (MS) with different phytohormones combinations. The time course for growth of callus culture was followed for the most stable and healthy growing cell lines. Addition of Spirulina platensis extract improved the callus characters but did not increase the growth. The concentration of total flavonoids was calculated by using standard curve for rutin. Total flavonoids produced by callus grown on MS media supplied with 0.1 mg/l kinetin and 0.1 mg/l αnaphthalene acetic acid represents 40% of the plant itself. Addition of 5% Spirolina. platensis extract decreased the productivity of total flavonoids to 21%. Callus grown on MS media supplied with 0.1 mg/l zeatin and 0.1 mg/l α-naphthalene acetic acid produced 24% of total flavonoids compared to the plant itself.

Description

MSA Google Scholar

Keywords

University of Flavonoids

Citation

Ahmed, A.A. and Mabry, T.J. (1987): Flavonoids of Iphiona scabra. Phytochemistry, 26: 1517-1518. Ahmed, A.A.; Melek, F.R.; Seif El-Din, A.A. and Mabry, T.J. (1988): Polysulphated flavonoids from Iphiona mucronata. Rev. Latinoamer Quim., 19 (3): 107- 109. Antognoni, F.; Zheng, S.; Pagnucco, C.; Baraldi, R.; Poli, F. and Biondi, S. (2007): Induction of flavonoid production by UV-B radiation in Passiflora quadrangularis callus cultures. Fitoterapia, 78: 345–352. Bourgaud, F.; Gravot, A.; Milesi, S. and Gontier, E. (2001): Production of plant secondary metabolites: a historical perspective. Plant Sci., 161: 839-851. Chiang, L.C.; Chiang, W.; Liu, M.C. and Lin, C.C. (2003): In vitro antiviral activities of Caesalpinia pulcherrima and its related flavonoids. J. Antimicrobial chemotherapy, 52 (2): 194-198. Ciferri, O. and Tiboni, O. (1985): The biochemistry and industrial potential of Spirulina. Annual Review of Microbiology, 39: 503-526. REFERENCES Egypt. J. Biomed. Sci. Vol. 28, November, 2008. Hagendoorn, M.J.M.; van der Plas, L.H.W. and Segers, G.J. (1999): Accumulation of anthraquinones in Morinda citrifolia cell suspensions. A model system for the study of the interaction between secondary and primary metabolism. Plant Cell Tiss. Org. Cult., 38: 227-234. Hung, P.V. and Morita, N. (2008): Distribution of phenolic compounds in the graded flours milled from whole buckwheat grains and their antioxidant capacities. Food chemistry, 109: 325-331. Jedinák, A.; Faragó, J.; Pšenákova, I. and Mallar, T. (2004): Approaches to flavonoid production in plant tissue cultures. Biologia, Bratislava, 59: 697- 710. Kähkönen, M.P.; Hopia, A.I.; Vuorela, H.J.; Rauha, J.P.; Pihlaja, K.; Kujala, T.S. and Heinonen, M. (1999): Antioxidant activity of plant extracts containing phenolic compounds. J. Agric. Food Chem., 47: 3954–3962. Kosalec, I.; Bakmaz, M.; Pepeljnjak, S. and Vladimir-Knežević, S. (2004): Quantitative analysis of the flavonoids in raw propolis from northern Croatia. Acat pharma., 54: 65-72. Godoy-Hernández, G. and Vázquez-Flota, F. (2006): Growth Measurements Estimation of Cell Division and Cell Expansion In: (Loyola-Vargas V. M. and Vázquez-Flota F eds) Plant Cell Culture Protocols. 2nd edition Humana Press Inc. pp 51-58. Luczkiewicz, M. and Cisowski, W. (2001): Optimisation of the second phase of a two phase growth system for anthocyanin accumulation in callus cultures of Rudbeckia hirta. Plant Cell Tiss. Org. Cult., 65: 57-68. Luczkiewicz, M. and Glód, D. (2003): Callus cultures of Genista plants-in vitro material producing high amounts of isoflavones of phytoestrogenic activity. Plant Science, 165: 1101-1108. Merxmüller, H.; Leins, P. and Roesseler, H. (1977): Inuleae - systematic review. In: (Heywood J B, Harborne JB and Turner BL eds) The Biology and Chemistry of The Compositae Vol. 1. Academic press, London, New York, San Francisco pp 577- 602. Mulabagal, V. and Tsay, H-S. (2004): Plant cell cultures - an alternative and efficient source for the production of biologically important secondary metabolites. Int. J. Appl. Sci. Eng., 2 (1): 29-48. Murashige, T. and Skoog, F. (1962): A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol. Plant., 15: 473-497. Ozdemir, G.; Karabay, N.U.; Dalay, M.C. and Pazarbasi, B. (2004): Antibacterial activity of volatile component and various extracts of Spirulina platensis. Phytotherapy Research, 18: 754-757. Reiners, J.J.; Clift, J.R. and Mathieu, P. (1999): Suppression of cell cycle progression by flavonoids: dependence on the aryl hydrocarbon receptor. Carcinogenesis, 20 (8): 1561-1566. Egypt. J. Biomed. Sci. Vol. 28, November, 2008. Teguo, P.W.; Decendit, A.; Krisa, S.; Deffieux, G.; Vercauteren, J. and Merillon, L.M. (1996): The accumulation of stilbene glycosides in Vitis vinifera cell suspension cultures. J. Nat. Prod., 59 (12): 1189-1191. Toyoda, M; Tanaka, K.; Hoshino, K.; Akiyama, H.; Tanimura, A. and Saito, Y. (1997): J. Agric. Food Chem., 15 (7): 2561-2564. Verpoorte, R.; van der Heijden, R.; ten Hoopen, H.J.G. and Memmelink, G. (1998): Metabolic engineering for the improvement of plant secondary metabolite production. Plant Tiss. Cult. Biotechnol., 4: 3 -19. Vonshak, A. (1997): Spirulina Platensis (Arthrospira): Physiology, Cell-biology, and Biotechnology. CRC Press.

Full Text link