Oleuropein suppresses oxidative, inflammatory, and apoptotic responses following glycerol-induced acute kidney injury in rats
dc.Affiliation | October University for modern sciences and Arts (MSA) | |
dc.contributor.author | Yin M. | |
dc.contributor.author | Jiang N. | |
dc.contributor.author | Guo L. | |
dc.contributor.author | Ni Z. | |
dc.contributor.author | Al-Brakati A.Y. | |
dc.contributor.author | Othman M.S. | |
dc.contributor.author | Abdel Moneim A.E. | |
dc.contributor.author | Kassab R.B. | |
dc.contributor.other | Department of Nephrology | |
dc.contributor.other | China-Japan Union Hospital of Jilin University | |
dc.contributor.other | Changchun | |
dc.contributor.other | Jilin 130033 | |
dc.contributor.other | China; Department of Human Anatomy | |
dc.contributor.other | College of Medicine | |
dc.contributor.other | Taif University | |
dc.contributor.other | Taif | |
dc.contributor.other | Saudi Arabia; B.Sc. Department | |
dc.contributor.other | Preparatory Year College | |
dc.contributor.other | University of Hail | |
dc.contributor.other | Hail | |
dc.contributor.other | Saudi Arabia; Faculty of Biotechnology | |
dc.contributor.other | October University for Modern Science and Arts (MSA) | |
dc.contributor.other | Giza | |
dc.contributor.other | Egypt; Department of Zoology and Entomology | |
dc.contributor.other | Faculty of Science | |
dc.contributor.other | Helwan University | |
dc.contributor.other | Cairo | |
dc.contributor.other | 11795 | |
dc.contributor.other | Egypt | |
dc.date.accessioned | 2020-01-09T20:40:34Z | |
dc.date.available | 2020-01-09T20:40:34Z | |
dc.date.issued | 2019 | |
dc.description | Scopus | |
dc.description.abstract | Aim: Here, we evaluated the possible protective effects of oleuropein, the major phenolic constituent in virgin olive oil against glycerol-induced acute kidney injury (AKI) in rats. Main methods: Twenty-eight Sprague Dawley rats were allocated equally into four groups as follows: control group, oleuropein group (50 mg/kg body weight), AKI group and the oleuropein + AKI group. AKI was induced by injecting 50% glycerol (10 ml/kg body weight) intramuscularly. Key findings: Glycerol injection increased the kidney relative weight as well as rhabdomyolysis (RM)- and AKI-related index levels, including the levels of creatine kinase, lactate dehydrogenase, creatinine, urea, and Kim-1 expression. Additionally, alteration in oxidative conditions in renal tissue was recorded, as confirmed by the elevated malondialdehyde and nitric oxide levels and the decreased glutathione content. Concomitantly, the protein and mRNA expression levels of antioxidant enzymes were suppressed. Moreover, Nfe2l2 and Hmox1 mRNA expression was also downregulated. Glycerol triggered inflammatory reactions in renal tissue, as evidenced by the increased pro-inflammatory cytokines and Ccl2 protein and mRNA expression, whereas myeloperoxidase activity was increased. Furthermore, glycerol injection enhanced apoptotic events in renal tissue by increasing the expression of the pro-apoptotic proteins and decreasing that of anti-apoptotic. However, oleuropein administration reversed the molecular, biochemical, and histological alterations resulting from glycerol injection. Significance: Our data suggest that oleuropein has potential as an alternative therapy to prevent or minimize RM incidence and subsequent development of AKI, possibly due to its potent anti-stress, anti-inflammatory, and anti-apoptotic effects. � 2019 | en_US |
dc.identifier.doi | https://doi.org/10.1016/j.lfs.2019.116634 | |
dc.identifier.doi | PubMedID31279782 | |
dc.identifier.issn | 243205 | |
dc.identifier.other | https://doi.org/10.1016/j.lfs.2019.116634 | |
dc.identifier.other | PubMedID31279782 | |
dc.identifier.uri | https://t.ly/VZ2Ad | |
dc.language.iso | English | en_US |
dc.publisher | Elsevier Inc. | en_US |
dc.relation.ispartofseries | Life Sciences | |
dc.relation.ispartofseries | 232 | |
dc.subject | Acute kidney injury | en_US |
dc.subject | Apoptosis | en_US |
dc.subject | Inflammation | en_US |
dc.subject | Oleuropein | en_US |
dc.subject | Oxidative stress | en_US |
dc.subject | Rhabdomyolysis | en_US |
dc.subject | caspase 3 | en_US |
dc.subject | creatine kinase | en_US |
dc.subject | creatinine | en_US |
dc.subject | glutathione | en_US |
dc.subject | glycerol | en_US |
dc.subject | heme oxygenase 1 | en_US |
dc.subject | interleukin 1beta | en_US |
dc.subject | interleukin 2 | en_US |
dc.subject | kidney injury molecule 1 | en_US |
dc.subject | lactate dehydrogenase | en_US |
dc.subject | malonaldehyde | en_US |
dc.subject | messenger RNA | en_US |
dc.subject | monocyte chemotactic protein 1 | en_US |
dc.subject | myeloperoxidase | en_US |
dc.subject | nitric oxide | en_US |
dc.subject | nuclear factor | en_US |
dc.subject | nuclear factor erythroid derived 2 like 2 | en_US |
dc.subject | oleuropein | en_US |
dc.subject | protein Bax | en_US |
dc.subject | protein bcl 2 | en_US |
dc.subject | tumor necrosis factor | en_US |
dc.subject | unclassified drug | en_US |
dc.subject | urea | en_US |
dc.subject | antioxidant | en_US |
dc.subject | cell adhesion molecule | en_US |
dc.subject | creatine kinase | en_US |
dc.subject | creatinine | en_US |
dc.subject | glutathione | en_US |
dc.subject | glycerol | en_US |
dc.subject | Havcr1protein, rat | en_US |
dc.subject | iridoid | en_US |
dc.subject | malonaldehyde | en_US |
dc.subject | nitric oxide | en_US |
dc.subject | oleuropein | en_US |
dc.subject | peroxidase | en_US |
dc.subject | acute kidney failure | en_US |
dc.subject | animal cell | en_US |
dc.subject | animal experiment | en_US |
dc.subject | animal model | en_US |
dc.subject | animal tissue | en_US |
dc.subject | antiapoptotic activity | en_US |
dc.subject | antiinflammatory activity | en_US |
dc.subject | apoptosis | en_US |
dc.subject | Article | en_US |
dc.subject | controlled study | en_US |
dc.subject | down regulation | en_US |
dc.subject | drug structure | en_US |
dc.subject | enzyme activity | en_US |
dc.subject | inflammation | en_US |
dc.subject | kidney mass | en_US |
dc.subject | nonhuman | en_US |
dc.subject | oxidative stress | en_US |
dc.subject | protein expression | en_US |
dc.subject | protein expression level | en_US |
dc.subject | rat | en_US |
dc.subject | renal protection | en_US |
dc.subject | rhabdomyolysis | en_US |
dc.subject | Sprague Dawley rat | en_US |
dc.subject | acute kidney failure | en_US |
dc.subject | animal | en_US |
dc.subject | apoptosis | en_US |
dc.subject | complication | en_US |
dc.subject | drug effect | en_US |
dc.subject | inflammation | en_US |
dc.subject | kidney | en_US |
dc.subject | male | en_US |
dc.subject | metabolism | en_US |
dc.subject | oxidation reduction reaction | en_US |
dc.subject | oxidative stress | en_US |
dc.subject | Acute Kidney Injury | en_US |
dc.subject | Animals | en_US |
dc.subject | Antioxidants | en_US |
dc.subject | Apoptosis | en_US |
dc.subject | Cell Adhesion Molecules | en_US |
dc.subject | Creatine Kinase | en_US |
dc.subject | Creatinine | en_US |
dc.subject | Glutathione | en_US |
dc.subject | Glycerol | en_US |
dc.subject | Inflammation | en_US |
dc.subject | Iridoids | en_US |
dc.subject | Kidney | en_US |
dc.subject | Male | en_US |
dc.subject | Malondialdehyde | en_US |
dc.subject | Nitric Oxide | en_US |
dc.subject | Oxidation-Reduction | en_US |
dc.subject | Oxidative Stress | en_US |
dc.subject | Peroxidase | en_US |
dc.subject | Rats | en_US |
dc.subject | Rats, Sprague-Dawley | en_US |
dc.subject | Rhabdomyolysis | en_US |
dc.title | Oleuropein suppresses oxidative, inflammatory, and apoptotic responses following glycerol-induced acute kidney injury in rats | en_US |
dc.type | Article | en_US |
dcterms.isReferencedBy | Anathhanam, S., Lewington, A.J., Acute kidney injury (2013) The journal of the Royal College of Physicians of Edinburgh, 43 (4), pp. 323-328. , quiz 329; Moore, P.K., Hsu, R.K., Liu, K.D., Management of acute kidney injury: core curriculum 2018 (2018) American journal of kidney diseases: the official journal of the National Kidney Foundation, 72 (1), pp. 136-148; Ibrahim, A.E., Sarhane, K.A., Fagan, S.P., Goverman, J., Renal dysfunction in burns: a review (2013) Annals of burns and fire disasters, 26 (1), pp. 16-25; Hsu, C.Y., Ordonez, J.D., Chertow, G.M., Fan, D., McCulloch, C.E., Go, A.S., The risk of acute renal failure in patients with chronic kidney disease (2008) Kidney Int., 74 (1), pp. 101-107; Petejova, N., Martinek, A., Acute kidney injury due to rhabdomyolysis and renal replacement therapy: a critical review (2014) Crit. Care, 18 (3), p. 224; Bosch, X., Poch, E., Grau, J.M., Rhabdomyolysis and acute kidney injury (2009) N. Engl. J. Med., 361 (1), pp. 62-72; Kim, J.H., Lee, S.S., Jung, M.H., Yeo, H.D., Kim, H.J., Yang, J.I., Roh, G.S., Park, D.J., N-acetylcysteine attenuates glycerol-induced acute kidney injury by regulating MAPKs and Bcl-2 family proteins. Nephrology, dialysis, transplantation: official publication of the European Dialysis and transplant association (2010) European Renal Association, 25 (5), pp. 1435-1443; Wu, J., Pan, X., Fu, H., Zheng, Y., Dai, Y., Yin, Y., Chen, Q., Hou, D., Effect of curcumin on glycerol-induced acute kidney injury in rats (2017) Sci. Rep., 7 (1); Singh, A.P., Junemann, A., Muthuraman, A., Jaggi, A.S., Singh, N., Grover, K., Dhawan, R., Animal models of acute renal failure (2012) Pharmacological reports: PR, 64 (1), pp. 31-44; Barbaro, B., Toietta, G., Maggio, R., Arciello, M., Tarocchi, M., Galli, A., Balsano, C., Effects of the olive-derived polyphenol oleuropein on human health (2014) Int. J. Mol. Sci., 15 (10), pp. 18508-18524; Al-Quraishy, S., Othman, M.S., Dkhil, M.A., (2017), Abdel Moneim AE Olive (Olea europaea) leaf methanolic extract prevents HCl/ethanol-induced gastritis in rats by attenuating inflammation and augmenting antioxidant enzyme activities. Biomed. Pharmacother. 91:338�349. doi:S0753-3322(17)30092�6; Kucukgul, A., Isgor, M.M., Duzguner, V., Atabay, M.N., Antioxidant effects of Oleuropein on hydrogen peroxide-induced neuronal stress�an in vitro study (2019) Anti-inflammatory & anti-allergy agents in medicinal chemistry; Qabaha, K., Al-Rimawi, F., Qasem, A., Naser, S.A., Oleuropein is responsible for the major anti-inflammatory effects of olive leaf extract (2018) J. Med. Food, 21 (3), pp. 302-305; Khalatbary, A.R., Ghaffari, E., Mohammadnegad, B., Protective role of Oleuropein against acute deltamethrin-induced neurotoxicity in rat brain (2015) Iran. Biomed. J., 19 (4), pp. 247-253; Pourkhodadad, S., Alirezaei, M., Moghaddasi, M., Ahmadvand, H., Karami, M., Delfan, B., Khanipour, Z., Neuroprotective effects of oleuropein against cognitive dysfunction induced by colchicine in hippocampal CA1 area in rats (2016) The journal of physiological sciences: JPS, 66 (5), pp. 397-405; Koc, K., Cerig, S., Ozek, N.S., Aysin, F., Yildirim, S., Cakmak, O., Hosseinigouzdagani, M., Geyikoglu, F., The efficacy of oleuropein against non-steroidal anti-inflammatory drug induced toxicity in rat kidney (2019) Environ. Toxicol., 34 (1), pp. 67-72; Kumral, A., Giri?, M., Soluk-Tekke?in, M., Olga�, V., Do?ru-Abbaso?lu, S., T�rko?lu, �., Uysal, M., Effect of olive leaf extract treatment on doxorubicin-induced cardiac, hepatic and renal toxicity in rats (2015) Pathophysiology, 22 (2), pp. 117-123; Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J., Protein measurement with the Folin phenol reagent (1951) J. Biol. Chem., 193 (1), pp. 265-275; Fernandez-Gil, B., Moneim, A.E., Ortiz, F., Shen, Y.Q., Soto-Mercado, V., Mendivil-Perez, M., Guerra-Librero, A., Escames, G., Melatonin protects rats from radiotherapy-induced small intestine toxicity (2017) PLoS One, 12 (4); Ohkawa, H., Ohishi, N., Yagi, K., Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction (1979) Anal. Biochem., 95 (2), pp. 351-358; Green, L.C., Wagner, D.A., Glogowski, J., Skipper, P.L., Wishnok, J.S., Tannenbaum, S.R., Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids (1982) Anal. Biochem., 126 (1), pp. 131-138; Ellman, G.L., Tissue sulfhydryl groups (1959) Arch. Biochem. Biophys., 82 (1), pp. 70-77; Nishikimi, M., Appaji, N., Yagi, K., The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen (1972) Biochem. Biophys. Res. Commun., 46 (2), pp. 849-854; Aebi, H., Catalase in vitro (1984) Methods Enzymol., 105, pp. 121-126; Paglia, D.E., Valentine, W.N., Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase (1967) J. Lab. Clin. Med., 70 (1), pp. 158-169; De Vega, L., Fernandez, R.P., Mateo, M.C., Bustamante, J.B., Herrero, A.M., Munguira, E.B., Glutathione determination and a study of the activity of glutathione-peroxidase, glutathione-transferase, and glutathione-reductase in renal transplants (2002) Ren. Fail., 24 (4), pp. 421-432; Bradley, P.P., Priebat, D.A., Christensen, R.D., Rothstein, G., Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker (1982) J Invest Dermatol, 78 (3), pp. 206-209. , (doi:S0022-202X(15)46301-8); Chomczynski, P., Sacchi, N., Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction (1987) Anal. Biochem., 162 (1), pp. 156-159; Ali, B.H., Ramkumar, A., Madanagopal, T.T., Waly, M.I., Tageldin, M., Al-Abri, S., Fahim, M., Nemmar, A., Motor and behavioral changes in mice with cisplatin-induced acute renal failure (2014) Physiol. Res., 63 (1), pp. 35-45; Siddiqui, R.A., Simjee, S.U., Kabir, N., Ateeq, M., Shah, M.R., Hussain, S.S., N-(2-hydroxyphenyl)acetamide and its gold nanoparticle conjugation prevent glycerol-induced acute kidney injury by attenuating inflammation and oxidative injury in mice (2018) Mol. Cell. Biochem.; Han, W.K., Bailly, V., Abichandani, R., Thadhani, R., Bonventre, J.V., Kidney injury molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury (2002) Kidney Int., 62 (1), pp. 237-244; Humes, H.D., Jackson, N.M., O'Connor, R.P., Hunt, D.A., White, M.D., Pathogenetic mechanisms of nephrotoxicity: insights into cyclosporine nephrotoxicity (1985) Transplant. Proc., 17 (4), pp. 51-62. , Suppl 1; Panizo, N., Rubio-Navarro, A., Amaro-Villalobos, J.M., Egido, J., Moreno, J.A., Molecular mechanisms and novel therapeutic approaches to rhabdomyolysis-induced acute kidney injury (2015) Kidney & blood pressure research, 40 (5), pp. 520-532; Al Asmari, A.K., Al Sadoon, K.T., Obaid, A.A., Yesunayagam, D., Tariq, M., Protective effect of quinacrine against glycerol-induced acute kidney injury in rats (2017) BMC Nephrol., 18 (1), p. 41; Mahmoudi, A., Ghorbel, H., Bouallegui, Z., Marrekchi, R., Isoda, H., Sayadi, S., Oleuropein and hydroxytyrosol protect from bisphenol A effects in livers and kidneys of lactating mother rats and their pups'. Experimental and toxicologic pathology: official journal of the Gesellschaft fur (2015) Toxikologische Pathologie, 67 (7-8), pp. 413-425; Geyikoglu, F., Emir, M., Colak, S., Koc, K., Turkez, H., Bakir, M., Hosseinigouzdagani, M., Ozek, N.S., Effect of oleuropein against chemotherapy drug-induced histological changes, oxidative stress, and DNA damages in rat kidney injury (2017) J. Food Drug Anal., 25 (2), pp. 447-459; Almeer, R.S., AlBasher, G.I., Alarifi, S., Alkahtani, S., Ali, D., Abdel Moneim, A.E., Royal jelly attenuates cadmium-induced nephrotoxicity in male mice (2019) Sci. Rep., 9 (1), p. 5825; Begum, Q., Noori, S., Mahboob, T., Antioxidant Effect of Sodium Selenite on Thioacetamide-Induced Renal Toxicity (2011), 44; Kim, S.H., Chang, J.W., Kim, S.B., Park, S.K., Park, J.S., Lee, S.K., Myoglobin induces vascular cell adhesion molecule-1 expression through c-Src kinase-activator protein-1/nuclear factor-kappaB pathways (2010) Nephron Exp. Nephrol., 114 (2), pp. e48-e60; Goligorsky, M.S., Brodsky, S.V., Noiri, E., Nitric oxide in acute renal failure: NOS versus NOS (2002) Kidney Int., 61 (3), pp. 855-861; Liu, Y., Fu, X., Gou, L., Li, S., Lan, N., Zheng, Y., Yin, X., L-citrulline protects against glycerol-induced acute renal failure in rats (2013) Ren. Fail., 35 (3), pp. 367-373; Nara, A., Yajima, D., Nagasawa, S., Abe, H., Hoshioka, Y., Iwase, H., Evaluations of lipid peroxidation and inflammation in short-term glycerol-induced acute kidney injury in rats (2016) Clin. Exp. Pharmacol. Physiol., 43 (11), pp. 1080-1086; Kunak, C.S., Ugan, R.A., Cadirci, E., Karakus, E., Polat, B., Un, H., Halici, Z., Karaman, A., Nephroprotective potential of carnitine against glycerol and contrast-induced kidney injury in rats through modulation of oxidative stress, proinflammatory cytokines, and apoptosis (2016) Br. J. Radiol., 89 (1058); Sun, X., Luan, Q., Qiu, S., Valsartan prevents glycerol-induced acute kidney injury in male albino rats by downregulating TLR4 and NF-kappaB expression (2018) Int. J. Biol. Macromol., 119, pp. 565-571; Ma, Q., Role of nrf2 in oxidative stress and toxicity (2013) Annu. Rev. Pharmacol. Toxicol., 53, pp. 401-426; Morimoto, K., Ohta, K., Yachie, A., Yang, Y., Shimizu, M., Goto, C., Toma, T., Koizumi, S., Cytoprotective role of heme oxygenase (HO)-1 in human kidney with various renal diseases (2001) Kidney Int., 60 (5), pp. 1858-1866; AlBasher, G.I., Alfarraj, S., Alarifi, S., Alkhtani, S., Almeer, R., Alsultan, N., Alharthi, M., Abdel Moneim, A.E., Nephroprotective role of selenium nanoparticles against glycerol-induced acute kidney injury in rats (2019) Biol. Trace Elem. Res.; Vogel, P., Kasper Machado, I., Garavaglia, J., Zani, V.T., de Souza, D., Morelo Dal Bosco, S., Polyphenols benefits of olive leaf (Olea europaea L) to human health (2014) Nutricion hospitalaria, 31 (3), pp. 1427-1433; Bisignano, G., Tomaino, A., Lo Cascio, R., Crisafi, G., Uccella, N., Saija, A., On the in-vitro antimicrobial activity of oleuropein and hydroxytyrosol (1999) J. Pharm. Pharmacol., 51 (8), pp. 971-974; Alirezaei, M., Dezfoulian, O., Neamati, S., Rashidipour, M., Tanideh, N., Kheradmand, A., Oleuropein prevents ethanol-induced gastric ulcers via elevation of antioxidant enzyme activities in rats (2012) J. Physiol. Biochem., 68 (4), pp. 583-592; Shi, C., Chen, X., Liu, Z., Meng, R., Zhao, X., Guo, N., Oleuropein protects L-02 cells against H2O2-induced oxidative stress by increasing SOD1, GPx1 and CAT expression (2017) Biomed. Pharmacother., 85, pp. 740-748; Sherif, I.O., The effect of natural antioxidants in cyclophosphamide-induced hepatotoxicity: role of Nrf2/HO-1 pathway (2018) Int. Immunopharmacol., 61, pp. 29-36; Chen, G.Y., Nunez, G., Sterile inflammation: sensing and reacting to damage (2010) Nat. Rev. Immunol., 10 (12), pp. 826-837; Haller, H., Bertram, A., Nadrowitz, F., Menne, J., Monocyte chemoattractant protein-1 and the kidney (2016) Curr. Opin. Nephrol. Hypertens., 25 (1), pp. 42-49; Dkhil, M.A., Kassab, R.B., Al-Quraishy, S., Abdel-Daim, M.M., Zrieq, R., Abdel Moneim, A.E., Ziziphus spina-christi (L.) leaf extract alleviates myocardial and renal dysfunction associated with sepsis in mice (2018) Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 102, pp. 64-75; Malle, E., Buch, T., (2003), Grone H-J Myeloperoxidase in kidney disease. Kidney Int. 64 (6):1956�1967. doi:doi:; Homsi, E., Janino, P., de Faria, J.B., Role of caspases on cell death, inflammation, and cell cycle in glycerol-induced acute renal failure (2006) Kidney Int., 69 (8), pp. 1385-1392; Gois, P.H.F., Canale, D., Volpini, R.A., Ferreira, D., Veras, M.M., Andrade-Oliveira, V., Camara, N.O.S., Seguro, A.C., Allopurinol attenuates rhabdomyolysis-associated acute kidney injury: renal and muscular protection (2016) Free Radic. Biol. Med., 101, pp. 176-189; Impellizzeri, D., Esposito, E., Mazzon, E., Paterniti, I., Di Paola, R., Bramanti, P., Morittu, V.M., Cuzzocrea, S., The effects of oleuropein aglycone, an olive oil compound, in a mouse model of carrageenan-induced pleurisy (2011) Clin. Nutr., 30 (4), pp. 533-540; Potocnjak, I., Skoda, M., Pernjak-Pugel, E., Persic, M.P., Domitrovic, R., Oral administration of oleuropein attenuates cisplatin-induced acute renal injury in mice through inhibition of ERK signaling (2016) Mol. Nutr. Food Res., 60 (3), pp. 530-541; Mao, X., Xia, B., Zheng, M., Zhou, Z., Assessment of the anti-inflammatory, analgesic and sedative effects of oleuropein from Olea europaea L (2019) Cell Mol Biol (Noisy-le-grand), 65 (1), pp. 52-55; Ahmadvand, H., Shahsavari, G., Tavafi, M., Bagheri, S., Moradkhani, M.R., Kkorramabadi, R.M., Khosravi, P., Moghadam, S., Protective effects of oleuropein against renal injury oxidative damage in alloxan-induced diabetic rats; a histological and biochemical study (2017) Journal of nephropathology, 6 (3), pp. 204-209; Plotnikov, E.Y., Chupyrkina, A.A., Pevzner, I.B., Isaev, N.K., Zorov, D.B., Myoglobin causes oxidative stress, increase of NO production and dysfunction of kidney's mitochondria (2009) Biochim. Biophys. Acta, 1792 (8), pp. 796-803; Havasi, A., Borkan, S.C., Apoptosis and acute kidney injury (2011) Kidney Int., 80 (1), pp. 29-40; Zhao, Q., Bai, Y., Li, C., Yang, K., Wei, W., Li, Z., Pan, L., Zhang, X., Oleuropein protects cardiomyocyte against apoptosis via activating the reperfusion injury salvage kinase pathway in vitro (2017) Evidence-based complementary and alternative medicine: eCAM, 2017, p. 2109018 | |
dcterms.source | Scopus |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- avatar_scholar_128.png
- Size:
- 2.73 KB
- Format:
- Portable Network Graphics
- Description: