microRNA 338-3p exhibits tumor suppressor role and its down-regulation is associated with adverse clinical outcome in prostate cancer patients

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorBakkar A.
dc.contributor.authorAlshalalfa M.
dc.contributor.authorPetersen L.F.
dc.contributor.authorAbou-Ouf H.
dc.contributor.authorAl-Mami A.
dc.contributor.authorHegazy S.A.
dc.contributor.authorFeng F.
dc.contributor.authorAlhajj R.
dc.contributor.authorBijian K.
dc.contributor.authorAlaoui-Jamali M.A.
dc.contributor.authorBismar T.A.
dc.contributor.otherDepartment of Pathology and Laboratory Medicine
dc.contributor.otherUniversity of Calgary and Calgary Laboratory Services
dc.contributor.otherCalgary
dc.contributor.otherAB T2V 1P9
dc.contributor.otherCanada; Faculty of Biotechnology
dc.contributor.otherOctober University of Modern Sciences and Arts
dc.contributor.otherGiza
dc.contributor.otherEgypt; Department of Computer Science
dc.contributor.otherUniversity of Calgary
dc.contributor.otherCalgary
dc.contributor.otherAB
dc.contributor.otherCanada; Departments of Medicine and Oncology
dc.contributor.otherMcGill University and Segal Cancer Centre of the Jewish General Hospital
dc.contributor.otherMontreal
dc.contributor.otherQC
dc.contributor.otherCanada; Department of Radiation Oncology
dc.contributor.otherUniversity of Michigan
dc.contributor.otherAnn Arbor
dc.contributor.otherMI
dc.contributor.otherUnited States; Departments of Oncology
dc.contributor.otherBiochemistry and Molecular Biology
dc.contributor.otherCalgary
dc.contributor.otherAB
dc.contributor.otherCanada; Southern Alberta Cancer Institute and Tom Baker Cancer Center
dc.contributor.otherCalgary
dc.contributor.otherAB
dc.contributor.otherCanada; Rockyview General Hospital
dc.contributor.otherDepartment of Pathology
dc.contributor.other7007 14th st sw
dc.contributor.otherCalgary
dc.contributor.otherAB T2V 1P9
dc.contributor.otherCanada
dc.date.accessioned2020-01-09T20:41:38Z
dc.date.available2020-01-09T20:41:38Z
dc.date.issued2016
dc.descriptionScopus
dc.descriptionMSA Google Scholar
dc.description.abstractMicroRNAs (miRNAs) are small non-coding RNAs that function in transcriptional and post-transcriptional regulation of gene expression. Several miRNAs have been implicated in regulating prostate cancer (PCa) progression. Deregulations of miRNA regulatory networks have been reported in ERG positive PCa, which accounts for ~50�% of PCa and have been suggested to affect tumor aggressiveness. The function of miR338-3p, its prognostic significance, and its association with ERG positive PCa has not been fully investigated. Using microarray expression profiling, we identified miRNA338-3p as among the top deregulated miRNAs associated with ERG status in PCa. We investigated miR338-3p function using in vitro and in vivo experimental models and its expression was assessed and validated in clinical samples and a public cohort of localized and metastatic prostate cancer. miR338-3p was significantly down-regulated with disease progression from benign prostate tissue to primary and metastatic lesions. In localized disease, patients with lower miR338-3p expression levels showed increased association to biochemical recurrence and several adverse pathological parameters compared to patients with higher miRNA338-3p tissue expression levels. Using in vitro PCa cell models, overexpression of miR338-3p resulted in a decrease in cell invasion and expression of chemokine signalling genes CXCL12, CXCR4, and CXCR7. In vivo, orthotropic implantation of PC3 cells stably expressing miR338-3p was associated with a significant decrease in tumor weights compared to control cells. miR338-3p has anti-proliferative and anti-invasive properties. It affects CXCR4 axis, and its down-regulation is associated with adverse clinical outcomes in PCa patients. � 2016, Springer Science+Business Media Dordrecht.en_US
dc.identifier.doihttps://doi.org/10.1007/s11033-016-3948-4
dc.identifier.doiPubMedID26907180
dc.identifier.issn3014851
dc.identifier.otherhttps://doi.org/10.1007/s11033-016-3948-4
dc.identifier.otherPubMedID26907180
dc.identifier.urihttps://t.ly/OXNA8
dc.language.isoEnglishen_US
dc.publisherSpringer Netherlandsen_US
dc.relation.ispartofseriesMolecular Biology Reports
dc.relation.ispartofseries43
dc.subjectCXCR axisen_US
dc.subjectERG gene rearrangementsen_US
dc.subjectInvasionen_US
dc.subjectMiR338-3pen_US
dc.subjectPrognosisen_US
dc.subjectProstate canceren_US
dc.subjectchemokine receptor CXCR4en_US
dc.subjectchemokine receptor CXCR7en_US
dc.subjectmicroRNAen_US
dc.subjectmicroRNA 338 3pen_US
dc.subjectstromal cell derived factor 1en_US
dc.subjectunclassified drugen_US
dc.subjectchemokine receptor CXCRen_US
dc.subjectchemokine receptor CXCR4en_US
dc.subjectCXCL12 protein, humanen_US
dc.subjectCXCR4 protein, humanen_US
dc.subjectCXCR7 protein, humanen_US
dc.subjectmicroRNAen_US
dc.subjectMIRN338 microRNA, humanen_US
dc.subjectstromal cell derived factor 1en_US
dc.subjectadverse outcomeen_US
dc.subjectanimal experimenten_US
dc.subjectanimal modelen_US
dc.subjectanimal tissueen_US
dc.subjectArticleen_US
dc.subjectcancer inhibitionen_US
dc.subjectcancer localizationen_US
dc.subjectcancer recurrenceen_US
dc.subjectcell invasionen_US
dc.subjectcell viabilityen_US
dc.subjectcohort analysisen_US
dc.subjectcontrolled studyen_US
dc.subjectCXCL12 geneen_US
dc.subjectCXCR4 geneen_US
dc.subjectCXCR7 geneen_US
dc.subjectdown regulationen_US
dc.subjectgene expression profilingen_US
dc.subjectgene expression regulationen_US
dc.subjectgene identificationen_US
dc.subjectgene overexpressionen_US
dc.subjectgene rearrangementen_US
dc.subjectgenetic associationen_US
dc.subjecthumanen_US
dc.subjecthuman cellen_US
dc.subjectin vitro studyen_US
dc.subjectin vivo studyen_US
dc.subjectmaleen_US
dc.subjectmicroarray analysisen_US
dc.subjectmouseen_US
dc.subjectnonhumanen_US
dc.subjectprostate canceren_US
dc.subjectprostate cancer cell lineen_US
dc.subjectsignal transductionen_US
dc.subjectstable expressionen_US
dc.subjecttumor volumeen_US
dc.subjectanimalen_US
dc.subjectgene expression regulationen_US
dc.subjectgeneticsen_US
dc.subjectmetabolismen_US
dc.subjectmetastasisen_US
dc.subjectpathologyen_US
dc.subjectprognosisen_US
dc.subjectProstatic Neoplasmsen_US
dc.subjectSCID mouseen_US
dc.subjecttumor cell lineen_US
dc.subjecttumor suppressor geneen_US
dc.subjectAnimalsen_US
dc.subjectCell Line, Tumoren_US
dc.subjectChemokine CXCL12en_US
dc.subjectGene Expression Regulation, Neoplasticen_US
dc.subjectGenes, Tumor Suppressoren_US
dc.subjectHumansen_US
dc.subjectMaleen_US
dc.subjectMiceen_US
dc.subjectMice, SCIDen_US
dc.subjectMicroRNAsen_US
dc.subjectNeoplasm Metastasisen_US
dc.subjectPrognosisen_US
dc.subjectProstatic Neoplasmsen_US
dc.subjectReceptors, CXCRen_US
dc.subjectReceptors, CXCR4en_US
dc.titlemicroRNA 338-3p exhibits tumor suppressor role and its down-regulation is associated with adverse clinical outcome in prostate cancer patientsen_US
dc.typeArticleen_US
dcterms.isReferencedBySiegel, R.L., Miller, K.D., Jemal, A., Cancer statistics, 2015 (2015) CA Cancer J Clin, 65 (1), pp. 5-29. , PID: 25559415; Fong, M.K., Hare, R., Jarkowski, A., A new era for castrate resistant prostate cancer: a treatment review and update (2012) J Oncol Pharm Pract., , PID: 22343966; Tomlins, S.A., Rhodes, D.R., Perner, S., Dhanasekaran, S.M., Mehra, R., Sun, X.W., Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer (2005) Science, 310 (5748), pp. 644-648. , COI: 1:CAS:528:DC%2BD2MXhtFChsLjJ, PID: 16254181; Pettersson, A., Graff, R.E., Bauer, S.R., Pitt, M.J., Lis, R.T., Stack, E.C., The TMPRSS2: ERG rearrangement, ERG expression, and prostate cancer outcomes: a cohort study and meta-analysis (2012) Cancer Epidemiol Biomarker Prev, 21 (9), pp. 1497-1509; Tomlins, S.A., Rhodes, D.R., Yu, J., Varambally, S., Mehra, R., Perner, S., The role of SPINK1 in ETS rearrangement-negative prostate cancers (2008) Cancer Cell, 13 (6), pp. 519-528. , COI: 1:CAS:528:DC%2BD1cXns1yhtbk%3D, PID: 18538735; Carver, B.S., Tran, J., Gopalan, A., Chen, Z., Shaikh, S., Carracedo, A., Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the prostate (2009) Nat Genet, 41 (5), pp. 619-624. , COI: 1:CAS:528:DC%2BD1MXltValtrw%3D, PID: 19396168; Leshem, O., Madar, S., Kogan-Sakin, I., Kamer, I., Goldstein, I., Brosh, R., TMPRSS2/ERG promotes epithelial to mesenchymal transition through the ZEB1/ZEB2 axis in a prostate cancer model (2011) PLoS ONE, 6 (7), p. e21650. , COI: 1:CAS:528:DC%2BC3MXptFyntbo%3D, PID: 21747944; Casey, O.M., Fang, L., Hynes, P.G., Abou-Kheir, W.G., Martin, P.L., Tillman, H.S., TMPRSS2- driven ERG expression in vivo increases self-renewal and maintains expression in a castration resistant subpopulation (2012) PLoS ONE, 7 (7), p. e41668. , COI: 1:CAS:528:DC%2BC38XhtFCnsbrK, PID: 22860005; Fayyaz, S., Farooqi, A.A., miRNA and TMPRSS2-ERG do not mind their own business in prostate cancer cells (2013) Immunogenetics, 65 (5), pp. 315-332. , COI: 1:CAS:528:DC%2BC3sXmsFeltbk%3D, PID: 23558555; Wang, G., Wang, Y., Feng, W., Wang, X., Yang, J.Y., Zhao, Y., Transcription factor and microRNA regulation in androgen-dependent and -independent prostate cancer cells (2008) BMC Genomics, 9, p. S22. , PID: 18831788; Selcuklu, S.D., Donoghue, M.T., Spillane, C., miR-21 as a key regulator of oncogenic processes (2009) Biochem Soc Trans, 37, pp. 918-925. , COI: 1:CAS:528:DC%2BD1MXovVOisrs%3D, PID: 19614619; Gordanpour, A., Stanimirovic, A., Nam, R.K., Moreno, C.S., Sherman, C., Sugar, L., miR-221 Is down-regulated in TMPRSS2:ERG fusion-positive prostate cancer (2011) Anticancer Res, 31 (2), pp. 403-410. , COI: 1:CAS:528:DC%2BC3MXksFWks7k%3D, PID: 21378318; Hart, M., Wach, S., Nolte, E., Szczyrba, J., Menon, R., Taubert, H., The proto-oncogene ERG is a target of microRNA miR-145 in prostate cancer (2013) FEBS J, 280 (9), pp. 2105-2116. , COI: 1:CAS:528:DC%2BC3sXmsFWgu7g%3D, PID: 23480797; Bartel, D.P., MicroRNAs: genomics, biogenesis, mechanism, and function (2004) Cell, 116 (2), pp. 281-297. , COI: 1:CAS:528:DC%2BD2cXhtVals7o%3D, PID: 14744438; Lai, E.C., Micro RNAs are complementary to 3? UTR sequence motifs that mediate negative post-transcriptional regulation (2002) Nat Genet, 30 (4), pp. 363-364. , COI: 1:CAS:528:DC%2BD38Xisl2lsL8%3D, PID: 11896390; Lewis, B.P., Burge, C.B., Bartel, D.P., Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets (2005) Cell, 120 (1), pp. 15-20. , COI: 1:CAS:528:DC%2BD2MXot1ChsA%3D%3D, PID: 15652477; Xie, X., Lu, J., Kulbokas, E.J., Golub, T.R., Mootha, V., Lindblad-Toh, K., Systematic discovery of regulatory motifs in human promoters and 3? UTRs by comparison of several mammals (2005) Nature, 434 (7031), pp. 338-345. , COI: 1:CAS:528:DC%2BD2MXit1yqsrk%3D, PID: 15735639; Chen, X., Gong, J., Zeng, H., Chen, N., Huang, R., Huang, Y., MicroRNA145 targets BNIP3 and suppresses prostate cancer progression (2010) Cancer Res, 70 (7), pp. 2728-2738. , COI: 1:CAS:528:DC%2BC3cXktFyntr4%3D, PID: 20332243; Mezzanzanica, D., Bagnoli, M., De Cecco, L., Valeri, B., Canevari, S., Role of microRNAs in ovarian cancer pathogenesis and potential clinical implications (2010) Int J Biochem Cell Biol, 42 (8), pp. 1262-1272. , COI: 1:CAS:528:DC%2BC3cXos1ymu7Y%3D, PID: 20035894; Dong, Q., Meng, P., Wang, T., Qin, W., Qin, W., Wang, F., MicroRNA let-7a inhibits proliferation of human prostate cancer cells in vitro and in vivo by targeting E2F2 and CCND2 (2010) PLoS ONE, 5 (4), p. e10147. , PID: 20418948; Barik, S., An intronic microRNA silences genes that are functionally antagonistic to its host gene (2008) Nucleic Acids Res, 36 (16), pp. 5232-5241. , COI: 1:CAS:528:DC%2BD1cXhtFWhs7fK, PID: 18684991; Tomomura, M., Fernandez-Gonzales, A., Yano, R., Yuzaki, M., Characterization of the apoptosis-associated tyrosine kinase (AATYK) expressed in the CNS (2001) Oncogene, 20 (9), pp. 1022-1032. , COI: 1:CAS:528:DC%2BD3MXitVCmt7s%3D, PID: 11314040; Wienholds, E., Kloosterman, W.P., Miska, E., Alvarez-Saavedra, E., Berezikov, E., de Bruijn, E., MicroRNA expression in zebrafish embryonic development (2005) Science, 309 (5732), pp. 310-311. , COI: 1:CAS:528:DC%2BD2MXlsl2jtL0%3D, PID: 15919954; Kos, A., Olde Loohuis, N.F., Wieczorek, M.L., Glennon, J.C., Martens, G.J., Kolk, S.M., A potential regulatory role for intronic microRNA-338-3p for its host gene encoding apoptosis-associated tyrosine kinase (2012) PLoS ONE, 7 (2), p. e31022. , COI: 1:CAS:528:DC%2BC38Xjt1KktbY%3D, PID: 22363537; Tsuchiya, S., Oku, M., Imanaka, Y., Kunimoto, R., Okuno, Y., Terasawa, K., MicroRNA-338-3p and microRNA-451 contribute to the formation of basolateral polarity in epithelial cells (2009) Nucleic Acids Res, 37 (11), pp. 3821-3827. , COI: 1:CAS:528:DC%2BD1MXnvVyhtrk%3D, PID: 19386621; Murphy, P.M., Baggiolini, M., Charo, I.F., Hebert, C.A., Horuk, R., Matsushima, K., International union of pharmacology. XXII. Nomenclature for chemokine receptors (2000) Pharmacol Rev, 52 (1), pp. 145-176. , COI: 1:CAS:528:DC%2BD3cXjvVWgtbs%3D, PID: 10699158; Fredriksson, R., Lagerstrom, M.C., Lundin, L.G., Schioth, H.B., The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints (2003) Mol Pharmacol, 63 (6), pp. 1256-1272. , COI: 1:CAS:528:DC%2BD3sXkt1Shu7k%3D, PID: 12761335; Zlotnik, A., Involvement of chemokine receptors in organ-specific metastasis (2006) Contrib Microbiol, 13, pp. 191-199. , COI: 1:CAS:528:DC%2BD28XhtFakurrK, PID: 16627966; Begley, L.A., MacDonald, J.W., Day, M.L., Macoska, J.A., CXCL12 activates a robust transcriptional response in human prostate epithelial cells (2007) J Biol Chem, 282 (37), pp. 26767-26774. , COI: 1:CAS:528:DC%2BD2sXhtVWjsLrJ, PID: 17631494; Uygur, B., Wu, W.S., SLUG promotes prostate cancer cell migration and invasion via CXCR4/CXCL12 axis (2011) Mol Cancer, 10, p. 139. , COI: 1:CAS:528:DC%2BC38XksFGrug%3D%3D, PID: 22074556; Sun, Y.X., Wang, J., Shelburne, C.E., Lopatin, D.E., Chinnaiyan, A.M., Rubin, M.A., Expression of CXCR4 and CXCL12 (SDF-1) in human prostate cancers (PCa) in vivo (2003) J Cell Biochem, 89 (3), pp. 462-473. , COI: 1:CAS:528:DC%2BD3sXksVKktLc%3D, PID: 12761880; Singareddy, R., Semaan, L., Conley-Lacomb, M.K., St John, J., Powell, K., Iyer, M., Transcriptional regulation of CXCR4 in prostate cancer: significance of TMPRSS2-ERG fusions (2013) Mol Cancer Res, 11 (11), pp. 1349-1361. , COI: 1:CAS:528:DC%2BC3sXhslyksLzN, PID: 23918819; Taylor, B.S., Schultz, N., Hieronymus, H., Gopalan, A., Xiao, Y., Carver, B.S., Integrative genomic profiling of human prostate cancer (2010) Cancer Cell, 18 (1), pp. 11-22. , COI: 1:CAS:528:DC%2BC3cXpslSjt7s%3D, PID: 20579941; Pettaway, C.A., Pathak, S., Greene, G., Ramirez, E., Wilson, M.R., Killion, J.J., Selection of highly metastatic variants of different human prostatic carcinomas using orthotopic implantation in nude mice (1996) Clin Cancer Res, 2 (9), pp. 1627-1636. , COI: 1:STN:280:DyaK1M%2FjsFWqsg%3D%3D, PID: 9816342; Yang, J.H., Li, J.H., Jiang, S., Zhou, H., Qu, L.H., ChIPBase: a database for decoding the transcriptional regulation of long non-coding RNA and microRNA genes from ChIP-Seq data (2013) Nucleic Acids Res, 41 (Database issue), pp. D177-D187; Guo, B., Liu, L., Yao, J., Ma, R., Chang, D., Li, Z., miR-338-3p suppresses gastric cancer progression through a PTEN-AKT axis by targeting P-REX2a (2014) Mol Cancer Res, 12 (3), pp. 313-321. , COI: 1:CAS:528:DC%2BC2cXksFygsb0%3D, PID: 24375644; Xue, Q., Sun, K., Deng, H.J., Lei, S.T., Dong, J.Q., Li, G.X., MicroRNA-338-3p inhibits colorectal carcinoma cell invasion and migration by targeting smoothened (2014) Jpn J Clin Oncol, 44 (1), pp. 13-21. , PID: 24277750; Huang, X.H., Wang, Q., Chen, J.S., Fu, X.H., Chen, X.L., Chen, L.Z., Bead-based microarray analysis of microRNA expression in hepatocellular carcinoma: miR-338 is downregulated (2009) Hepatol Res, 39 (8), pp. 786-794. , COI: 1:CAS:528:DC%2BD1MXhtFCku7jJ, PID: 19473441; Krol, J., Loedige, I., Filipowicz, W., The widespread regulation of microRNA biogenesis, function and decay (2010) Nat Rev Genet, 11 (9), pp. 597-610. , COI: 1:CAS:528:DC%2BC3cXhtVCnurzF, PID: 20661255; Kim, J., Inoue, K., Ishii, J., Vanti, W.B., Voronov, S.V., Murchison, E., A MicroRNA feedback circuit in midbrain dopamine neurons (2007) Science, 317 (5842), pp. 1220-1224. , COI: 1:CAS:528:DC%2BD2sXps12ms7Y%3D, PID: 17761882; Walter, B.A., Valera, V.A., Pinto, P.A., Merino, M.J., Comprehensive microRNA Profiling of Prostate Cancer (2013) J Cancer, 4 (5), pp. 350-357. , COI: 1:CAS:528:DC%2BC3sXhtFSjsrzE, PID: 23781281; Keeley, E.C., Mehrad, B., Strieter, R.M., CXC chemokines in cancer angiogenesis and metastases (2010) Adv Cancer Res, 106, pp. 91-111. , COI: 1:CAS:528:DC%2BC3cXovVGjtr8%3D, PID: 20399957; Koizumi, K., Hojo, S., Akashi, T., Yasumoto, K., Saiki, I., Chemokine receptors in cancer metastasis and cancer cell-derived chemokines in host immune response (2007) Cancer Sci, 98 (11), pp. 1652-1658. , COI: 1:CAS:528:DC%2BD2sXht1eis7vL, PID: 17894551; Wagner, P.L., Hyjek, E., Vazquez, M.F., Meherally, D., Liu, Y.F., Chadwick, P.A., CXCL12 and CXCR4 in adenocarcinoma of the lung: association with metastasis and survival (2009) J Thorac Cardiovasc Surg, 137 (3), pp. 615-621. , COI: 1:CAS:528:DC%2BD1MXktVyltb4%3D, PID: 19258077; Smith, M.C., Luker, K.E., Garbow, J.R., Prior, J.L., Jackson, E., Piwnica-Worms, D., CXCR4 regulates growth of both primary and metastatic breast cancer (2004) Cancer Res, 64 (23), pp. 8604-8612. , COI: 1:CAS:528:DC%2BD2cXhtVCjs73P, PID: 15574767; Cai, J., Kandagatla, P., Singareddy, R., Kropinski, A., Sheng, S., Cher, M.L., Androgens Induce Functional CXCR4 through ERG Factor Expression in TMPRSS2-ERG Fusion-Positive Prostate Cancer Cells (2010) Transl Oncol, 3 (3), pp. 195-203. , PID: 20563261; Carlisle, A.J., Lyttle, C.A., Carlisle, R.Y., Maris, J.M., CXCR4 expression heterogeneity in neuroblastoma cells due to ligand-independent regulation (2009) Mol Cancer, 8, p. 126. , PID: 20028517; Li, X., Ma, Q., Xu, Q., Liu, H., Lei, J., Duan, W., SDF-1/CXCR4 signaling induces pancreatic cancer cell invasion and epithelial-mesenchymal transition in vitro through non-canonical activation of Hedgehog pathway (2012) Cancer Lett, 322 (2), pp. 169-176. , COI: 1:CAS:528:DC%2BC38XlvFyhsro%3D, PID: 22450749; Huang, X.H., Chen, J.S., Wang, Q., Chen, X.L., Wen, L., Chen, L.Z., miR-338-3p suppresses invasion of liver cancer cell by targeting smoothened (2011) J Pathol, 225 (3), pp. 463-472. , COI: 1:CAS:528:DC%2BC3MXht1yhtLnP, PID: 21671467; Sun, K., Deng, H.J., Lei, S.T., Dong, J.Q., Li, G.X., miRNA-338-3p suppresses cell growth of human colorectal carcinoma by targeting smoothened (2013) World J Gastroenterol, 19 (14), pp. 2197-2207. , COI: 1:CAS:528:DC%2BC3sXmsFGmtbc%3D, PID: 23599646; Ok, S., Kim, S.M., Kim, C., Nam, D., Shim, B.S., Kim, S.H., Emodin inhibits invasion and migration of prostate and lung cancer cells by downregulating the expression of chemokine receptor CXCR4 (2012) Immunopharmacol Immunotoxicol, 34 (5), pp. 768-778. , COI: 1:CAS:528:DC%2BC38XhtlCrurnF, PID: 22299827; Shanmugam, M.K., Manu, K.A., Ong, T.H., Ramachandran, L., Surana, R., Bist, P., Inhibition of CXCR4/CXCL12 signaling axis by ursolic acid leads to suppression of metastasis in transgenic adenocarcinoma of mouse prostate model (2011) Int J Cancer, 129 (7), pp. 1552-1563. , COI: 1:CAS:528:DC%2BC3MXpt1yhsro%3D, PID: 21480220; Weinberg, R.A., (2014) The Biology of Cancer Garland Science, , Taylor & Francis Group, LLC, New York
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
avatar_scholar_128.png
Size:
2.73 KB
Format:
Portable Network Graphics
Description: