microRNA 338-3p exhibits tumor suppressor role and its down-regulation is associated with adverse clinical outcome in prostate cancer patients
dc.Affiliation | October University for modern sciences and Arts (MSA) | |
dc.contributor.author | Bakkar A. | |
dc.contributor.author | Alshalalfa M. | |
dc.contributor.author | Petersen L.F. | |
dc.contributor.author | Abou-Ouf H. | |
dc.contributor.author | Al-Mami A. | |
dc.contributor.author | Hegazy S.A. | |
dc.contributor.author | Feng F. | |
dc.contributor.author | Alhajj R. | |
dc.contributor.author | Bijian K. | |
dc.contributor.author | Alaoui-Jamali M.A. | |
dc.contributor.author | Bismar T.A. | |
dc.contributor.other | Department of Pathology and Laboratory Medicine | |
dc.contributor.other | University of Calgary and Calgary Laboratory Services | |
dc.contributor.other | Calgary | |
dc.contributor.other | AB T2V 1P9 | |
dc.contributor.other | Canada; Faculty of Biotechnology | |
dc.contributor.other | October University of Modern Sciences and Arts | |
dc.contributor.other | Giza | |
dc.contributor.other | Egypt; Department of Computer Science | |
dc.contributor.other | University of Calgary | |
dc.contributor.other | Calgary | |
dc.contributor.other | AB | |
dc.contributor.other | Canada; Departments of Medicine and Oncology | |
dc.contributor.other | McGill University and Segal Cancer Centre of the Jewish General Hospital | |
dc.contributor.other | Montreal | |
dc.contributor.other | QC | |
dc.contributor.other | Canada; Department of Radiation Oncology | |
dc.contributor.other | University of Michigan | |
dc.contributor.other | Ann Arbor | |
dc.contributor.other | MI | |
dc.contributor.other | United States; Departments of Oncology | |
dc.contributor.other | Biochemistry and Molecular Biology | |
dc.contributor.other | Calgary | |
dc.contributor.other | AB | |
dc.contributor.other | Canada; Southern Alberta Cancer Institute and Tom Baker Cancer Center | |
dc.contributor.other | Calgary | |
dc.contributor.other | AB | |
dc.contributor.other | Canada; Rockyview General Hospital | |
dc.contributor.other | Department of Pathology | |
dc.contributor.other | 7007 14th st sw | |
dc.contributor.other | Calgary | |
dc.contributor.other | AB T2V 1P9 | |
dc.contributor.other | Canada | |
dc.date.accessioned | 2020-01-09T20:41:38Z | |
dc.date.available | 2020-01-09T20:41:38Z | |
dc.date.issued | 2016 | |
dc.description | Scopus | |
dc.description | MSA Google Scholar | |
dc.description.abstract | MicroRNAs (miRNAs) are small non-coding RNAs that function in transcriptional and post-transcriptional regulation of gene expression. Several miRNAs have been implicated in regulating prostate cancer (PCa) progression. Deregulations of miRNA regulatory networks have been reported in ERG positive PCa, which accounts for ~50�% of PCa and have been suggested to affect tumor aggressiveness. The function of miR338-3p, its prognostic significance, and its association with ERG positive PCa has not been fully investigated. Using microarray expression profiling, we identified miRNA338-3p as among the top deregulated miRNAs associated with ERG status in PCa. We investigated miR338-3p function using in vitro and in vivo experimental models and its expression was assessed and validated in clinical samples and a public cohort of localized and metastatic prostate cancer. miR338-3p was significantly down-regulated with disease progression from benign prostate tissue to primary and metastatic lesions. In localized disease, patients with lower miR338-3p expression levels showed increased association to biochemical recurrence and several adverse pathological parameters compared to patients with higher miRNA338-3p tissue expression levels. Using in vitro PCa cell models, overexpression of miR338-3p resulted in a decrease in cell invasion and expression of chemokine signalling genes CXCL12, CXCR4, and CXCR7. In vivo, orthotropic implantation of PC3 cells stably expressing miR338-3p was associated with a significant decrease in tumor weights compared to control cells. miR338-3p has anti-proliferative and anti-invasive properties. It affects CXCR4 axis, and its down-regulation is associated with adverse clinical outcomes in PCa patients. � 2016, Springer Science+Business Media Dordrecht. | en_US |
dc.identifier.doi | https://doi.org/10.1007/s11033-016-3948-4 | |
dc.identifier.doi | PubMedID26907180 | |
dc.identifier.issn | 3014851 | |
dc.identifier.other | https://doi.org/10.1007/s11033-016-3948-4 | |
dc.identifier.other | PubMedID26907180 | |
dc.identifier.uri | https://t.ly/OXNA8 | |
dc.language.iso | English | en_US |
dc.publisher | Springer Netherlands | en_US |
dc.relation.ispartofseries | Molecular Biology Reports | |
dc.relation.ispartofseries | 43 | |
dc.subject | CXCR axis | en_US |
dc.subject | ERG gene rearrangements | en_US |
dc.subject | Invasion | en_US |
dc.subject | MiR338-3p | en_US |
dc.subject | Prognosis | en_US |
dc.subject | Prostate cancer | en_US |
dc.subject | chemokine receptor CXCR4 | en_US |
dc.subject | chemokine receptor CXCR7 | en_US |
dc.subject | microRNA | en_US |
dc.subject | microRNA 338 3p | en_US |
dc.subject | stromal cell derived factor 1 | en_US |
dc.subject | unclassified drug | en_US |
dc.subject | chemokine receptor CXCR | en_US |
dc.subject | chemokine receptor CXCR4 | en_US |
dc.subject | CXCL12 protein, human | en_US |
dc.subject | CXCR4 protein, human | en_US |
dc.subject | CXCR7 protein, human | en_US |
dc.subject | microRNA | en_US |
dc.subject | MIRN338 microRNA, human | en_US |
dc.subject | stromal cell derived factor 1 | en_US |
dc.subject | adverse outcome | en_US |
dc.subject | animal experiment | en_US |
dc.subject | animal model | en_US |
dc.subject | animal tissue | en_US |
dc.subject | Article | en_US |
dc.subject | cancer inhibition | en_US |
dc.subject | cancer localization | en_US |
dc.subject | cancer recurrence | en_US |
dc.subject | cell invasion | en_US |
dc.subject | cell viability | en_US |
dc.subject | cohort analysis | en_US |
dc.subject | controlled study | en_US |
dc.subject | CXCL12 gene | en_US |
dc.subject | CXCR4 gene | en_US |
dc.subject | CXCR7 gene | en_US |
dc.subject | down regulation | en_US |
dc.subject | gene expression profiling | en_US |
dc.subject | gene expression regulation | en_US |
dc.subject | gene identification | en_US |
dc.subject | gene overexpression | en_US |
dc.subject | gene rearrangement | en_US |
dc.subject | genetic association | en_US |
dc.subject | human | en_US |
dc.subject | human cell | en_US |
dc.subject | in vitro study | en_US |
dc.subject | in vivo study | en_US |
dc.subject | male | en_US |
dc.subject | microarray analysis | en_US |
dc.subject | mouse | en_US |
dc.subject | nonhuman | en_US |
dc.subject | prostate cancer | en_US |
dc.subject | prostate cancer cell line | en_US |
dc.subject | signal transduction | en_US |
dc.subject | stable expression | en_US |
dc.subject | tumor volume | en_US |
dc.subject | animal | en_US |
dc.subject | gene expression regulation | en_US |
dc.subject | genetics | en_US |
dc.subject | metabolism | en_US |
dc.subject | metastasis | en_US |
dc.subject | pathology | en_US |
dc.subject | prognosis | en_US |
dc.subject | Prostatic Neoplasms | en_US |
dc.subject | SCID mouse | en_US |
dc.subject | tumor cell line | en_US |
dc.subject | tumor suppressor gene | en_US |
dc.subject | Animals | en_US |
dc.subject | Cell Line, Tumor | en_US |
dc.subject | Chemokine CXCL12 | en_US |
dc.subject | Gene Expression Regulation, Neoplastic | en_US |
dc.subject | Genes, Tumor Suppressor | en_US |
dc.subject | Humans | en_US |
dc.subject | Male | en_US |
dc.subject | Mice | en_US |
dc.subject | Mice, SCID | en_US |
dc.subject | MicroRNAs | en_US |
dc.subject | Neoplasm Metastasis | en_US |
dc.subject | Prognosis | en_US |
dc.subject | Prostatic Neoplasms | en_US |
dc.subject | Receptors, CXCR | en_US |
dc.subject | Receptors, CXCR4 | en_US |
dc.title | microRNA 338-3p exhibits tumor suppressor role and its down-regulation is associated with adverse clinical outcome in prostate cancer patients | en_US |
dc.type | Article | en_US |
dcterms.isReferencedBy | Siegel, R.L., Miller, K.D., Jemal, A., Cancer statistics, 2015 (2015) CA Cancer J Clin, 65 (1), pp. 5-29. , PID: 25559415; Fong, M.K., Hare, R., Jarkowski, A., A new era for castrate resistant prostate cancer: a treatment review and update (2012) J Oncol Pharm Pract., , PID: 22343966; Tomlins, S.A., Rhodes, D.R., Perner, S., Dhanasekaran, S.M., Mehra, R., Sun, X.W., Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer (2005) Science, 310 (5748), pp. 644-648. , COI: 1:CAS:528:DC%2BD2MXhtFChsLjJ, PID: 16254181; Pettersson, A., Graff, R.E., Bauer, S.R., Pitt, M.J., Lis, R.T., Stack, E.C., The TMPRSS2: ERG rearrangement, ERG expression, and prostate cancer outcomes: a cohort study and meta-analysis (2012) Cancer Epidemiol Biomarker Prev, 21 (9), pp. 1497-1509; Tomlins, S.A., Rhodes, D.R., Yu, J., Varambally, S., Mehra, R., Perner, S., The role of SPINK1 in ETS rearrangement-negative prostate cancers (2008) Cancer Cell, 13 (6), pp. 519-528. , COI: 1:CAS:528:DC%2BD1cXns1yhtbk%3D, PID: 18538735; Carver, B.S., Tran, J., Gopalan, A., Chen, Z., Shaikh, S., Carracedo, A., Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the prostate (2009) Nat Genet, 41 (5), pp. 619-624. , COI: 1:CAS:528:DC%2BD1MXltValtrw%3D, PID: 19396168; Leshem, O., Madar, S., Kogan-Sakin, I., Kamer, I., Goldstein, I., Brosh, R., TMPRSS2/ERG promotes epithelial to mesenchymal transition through the ZEB1/ZEB2 axis in a prostate cancer model (2011) PLoS ONE, 6 (7), p. e21650. , COI: 1:CAS:528:DC%2BC3MXptFyntbo%3D, PID: 21747944; Casey, O.M., Fang, L., Hynes, P.G., Abou-Kheir, W.G., Martin, P.L., Tillman, H.S., TMPRSS2- driven ERG expression in vivo increases self-renewal and maintains expression in a castration resistant subpopulation (2012) PLoS ONE, 7 (7), p. e41668. , COI: 1:CAS:528:DC%2BC38XhtFCnsbrK, PID: 22860005; Fayyaz, S., Farooqi, A.A., miRNA and TMPRSS2-ERG do not mind their own business in prostate cancer cells (2013) Immunogenetics, 65 (5), pp. 315-332. , COI: 1:CAS:528:DC%2BC3sXmsFeltbk%3D, PID: 23558555; Wang, G., Wang, Y., Feng, W., Wang, X., Yang, J.Y., Zhao, Y., Transcription factor and microRNA regulation in androgen-dependent and -independent prostate cancer cells (2008) BMC Genomics, 9, p. S22. , PID: 18831788; Selcuklu, S.D., Donoghue, M.T., Spillane, C., miR-21 as a key regulator of oncogenic processes (2009) Biochem Soc Trans, 37, pp. 918-925. , COI: 1:CAS:528:DC%2BD1MXovVOisrs%3D, PID: 19614619; Gordanpour, A., Stanimirovic, A., Nam, R.K., Moreno, C.S., Sherman, C., Sugar, L., miR-221 Is down-regulated in TMPRSS2:ERG fusion-positive prostate cancer (2011) Anticancer Res, 31 (2), pp. 403-410. , COI: 1:CAS:528:DC%2BC3MXksFWks7k%3D, PID: 21378318; Hart, M., Wach, S., Nolte, E., Szczyrba, J., Menon, R., Taubert, H., The proto-oncogene ERG is a target of microRNA miR-145 in prostate cancer (2013) FEBS J, 280 (9), pp. 2105-2116. , COI: 1:CAS:528:DC%2BC3sXmsFWgu7g%3D, PID: 23480797; Bartel, D.P., MicroRNAs: genomics, biogenesis, mechanism, and function (2004) Cell, 116 (2), pp. 281-297. , COI: 1:CAS:528:DC%2BD2cXhtVals7o%3D, PID: 14744438; Lai, E.C., Micro RNAs are complementary to 3? UTR sequence motifs that mediate negative post-transcriptional regulation (2002) Nat Genet, 30 (4), pp. 363-364. , COI: 1:CAS:528:DC%2BD38Xisl2lsL8%3D, PID: 11896390; Lewis, B.P., Burge, C.B., Bartel, D.P., Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets (2005) Cell, 120 (1), pp. 15-20. , COI: 1:CAS:528:DC%2BD2MXot1ChsA%3D%3D, PID: 15652477; Xie, X., Lu, J., Kulbokas, E.J., Golub, T.R., Mootha, V., Lindblad-Toh, K., Systematic discovery of regulatory motifs in human promoters and 3? UTRs by comparison of several mammals (2005) Nature, 434 (7031), pp. 338-345. , COI: 1:CAS:528:DC%2BD2MXit1yqsrk%3D, PID: 15735639; Chen, X., Gong, J., Zeng, H., Chen, N., Huang, R., Huang, Y., MicroRNA145 targets BNIP3 and suppresses prostate cancer progression (2010) Cancer Res, 70 (7), pp. 2728-2738. , COI: 1:CAS:528:DC%2BC3cXktFyntr4%3D, PID: 20332243; Mezzanzanica, D., Bagnoli, M., De Cecco, L., Valeri, B., Canevari, S., Role of microRNAs in ovarian cancer pathogenesis and potential clinical implications (2010) Int J Biochem Cell Biol, 42 (8), pp. 1262-1272. , COI: 1:CAS:528:DC%2BC3cXos1ymu7Y%3D, PID: 20035894; Dong, Q., Meng, P., Wang, T., Qin, W., Qin, W., Wang, F., MicroRNA let-7a inhibits proliferation of human prostate cancer cells in vitro and in vivo by targeting E2F2 and CCND2 (2010) PLoS ONE, 5 (4), p. e10147. , PID: 20418948; Barik, S., An intronic microRNA silences genes that are functionally antagonistic to its host gene (2008) Nucleic Acids Res, 36 (16), pp. 5232-5241. , COI: 1:CAS:528:DC%2BD1cXhtFWhs7fK, PID: 18684991; Tomomura, M., Fernandez-Gonzales, A., Yano, R., Yuzaki, M., Characterization of the apoptosis-associated tyrosine kinase (AATYK) expressed in the CNS (2001) Oncogene, 20 (9), pp. 1022-1032. , COI: 1:CAS:528:DC%2BD3MXitVCmt7s%3D, PID: 11314040; Wienholds, E., Kloosterman, W.P., Miska, E., Alvarez-Saavedra, E., Berezikov, E., de Bruijn, E., MicroRNA expression in zebrafish embryonic development (2005) Science, 309 (5732), pp. 310-311. , COI: 1:CAS:528:DC%2BD2MXlsl2jtL0%3D, PID: 15919954; Kos, A., Olde Loohuis, N.F., Wieczorek, M.L., Glennon, J.C., Martens, G.J., Kolk, S.M., A potential regulatory role for intronic microRNA-338-3p for its host gene encoding apoptosis-associated tyrosine kinase (2012) PLoS ONE, 7 (2), p. e31022. , COI: 1:CAS:528:DC%2BC38Xjt1KktbY%3D, PID: 22363537; Tsuchiya, S., Oku, M., Imanaka, Y., Kunimoto, R., Okuno, Y., Terasawa, K., MicroRNA-338-3p and microRNA-451 contribute to the formation of basolateral polarity in epithelial cells (2009) Nucleic Acids Res, 37 (11), pp. 3821-3827. , COI: 1:CAS:528:DC%2BD1MXnvVyhtrk%3D, PID: 19386621; Murphy, P.M., Baggiolini, M., Charo, I.F., Hebert, C.A., Horuk, R., Matsushima, K., International union of pharmacology. XXII. Nomenclature for chemokine receptors (2000) Pharmacol Rev, 52 (1), pp. 145-176. , COI: 1:CAS:528:DC%2BD3cXjvVWgtbs%3D, PID: 10699158; Fredriksson, R., Lagerstrom, M.C., Lundin, L.G., Schioth, H.B., The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints (2003) Mol Pharmacol, 63 (6), pp. 1256-1272. , COI: 1:CAS:528:DC%2BD3sXkt1Shu7k%3D, PID: 12761335; Zlotnik, A., Involvement of chemokine receptors in organ-specific metastasis (2006) Contrib Microbiol, 13, pp. 191-199. , COI: 1:CAS:528:DC%2BD28XhtFakurrK, PID: 16627966; Begley, L.A., MacDonald, J.W., Day, M.L., Macoska, J.A., CXCL12 activates a robust transcriptional response in human prostate epithelial cells (2007) J Biol Chem, 282 (37), pp. 26767-26774. , COI: 1:CAS:528:DC%2BD2sXhtVWjsLrJ, PID: 17631494; Uygur, B., Wu, W.S., SLUG promotes prostate cancer cell migration and invasion via CXCR4/CXCL12 axis (2011) Mol Cancer, 10, p. 139. , COI: 1:CAS:528:DC%2BC38XksFGrug%3D%3D, PID: 22074556; Sun, Y.X., Wang, J., Shelburne, C.E., Lopatin, D.E., Chinnaiyan, A.M., Rubin, M.A., Expression of CXCR4 and CXCL12 (SDF-1) in human prostate cancers (PCa) in vivo (2003) J Cell Biochem, 89 (3), pp. 462-473. , COI: 1:CAS:528:DC%2BD3sXksVKktLc%3D, PID: 12761880; Singareddy, R., Semaan, L., Conley-Lacomb, M.K., St John, J., Powell, K., Iyer, M., Transcriptional regulation of CXCR4 in prostate cancer: significance of TMPRSS2-ERG fusions (2013) Mol Cancer Res, 11 (11), pp. 1349-1361. , COI: 1:CAS:528:DC%2BC3sXhslyksLzN, PID: 23918819; Taylor, B.S., Schultz, N., Hieronymus, H., Gopalan, A., Xiao, Y., Carver, B.S., Integrative genomic profiling of human prostate cancer (2010) Cancer Cell, 18 (1), pp. 11-22. , COI: 1:CAS:528:DC%2BC3cXpslSjt7s%3D, PID: 20579941; Pettaway, C.A., Pathak, S., Greene, G., Ramirez, E., Wilson, M.R., Killion, J.J., Selection of highly metastatic variants of different human prostatic carcinomas using orthotopic implantation in nude mice (1996) Clin Cancer Res, 2 (9), pp. 1627-1636. , COI: 1:STN:280:DyaK1M%2FjsFWqsg%3D%3D, PID: 9816342; Yang, J.H., Li, J.H., Jiang, S., Zhou, H., Qu, L.H., ChIPBase: a database for decoding the transcriptional regulation of long non-coding RNA and microRNA genes from ChIP-Seq data (2013) Nucleic Acids Res, 41 (Database issue), pp. D177-D187; Guo, B., Liu, L., Yao, J., Ma, R., Chang, D., Li, Z., miR-338-3p suppresses gastric cancer progression through a PTEN-AKT axis by targeting P-REX2a (2014) Mol Cancer Res, 12 (3), pp. 313-321. , COI: 1:CAS:528:DC%2BC2cXksFygsb0%3D, PID: 24375644; Xue, Q., Sun, K., Deng, H.J., Lei, S.T., Dong, J.Q., Li, G.X., MicroRNA-338-3p inhibits colorectal carcinoma cell invasion and migration by targeting smoothened (2014) Jpn J Clin Oncol, 44 (1), pp. 13-21. , PID: 24277750; Huang, X.H., Wang, Q., Chen, J.S., Fu, X.H., Chen, X.L., Chen, L.Z., Bead-based microarray analysis of microRNA expression in hepatocellular carcinoma: miR-338 is downregulated (2009) Hepatol Res, 39 (8), pp. 786-794. , COI: 1:CAS:528:DC%2BD1MXhtFCku7jJ, PID: 19473441; Krol, J., Loedige, I., Filipowicz, W., The widespread regulation of microRNA biogenesis, function and decay (2010) Nat Rev Genet, 11 (9), pp. 597-610. , COI: 1:CAS:528:DC%2BC3cXhtVCnurzF, PID: 20661255; Kim, J., Inoue, K., Ishii, J., Vanti, W.B., Voronov, S.V., Murchison, E., A MicroRNA feedback circuit in midbrain dopamine neurons (2007) Science, 317 (5842), pp. 1220-1224. , COI: 1:CAS:528:DC%2BD2sXps12ms7Y%3D, PID: 17761882; Walter, B.A., Valera, V.A., Pinto, P.A., Merino, M.J., Comprehensive microRNA Profiling of Prostate Cancer (2013) J Cancer, 4 (5), pp. 350-357. , COI: 1:CAS:528:DC%2BC3sXhtFSjsrzE, PID: 23781281; Keeley, E.C., Mehrad, B., Strieter, R.M., CXC chemokines in cancer angiogenesis and metastases (2010) Adv Cancer Res, 106, pp. 91-111. , COI: 1:CAS:528:DC%2BC3cXovVGjtr8%3D, PID: 20399957; Koizumi, K., Hojo, S., Akashi, T., Yasumoto, K., Saiki, I., Chemokine receptors in cancer metastasis and cancer cell-derived chemokines in host immune response (2007) Cancer Sci, 98 (11), pp. 1652-1658. , COI: 1:CAS:528:DC%2BD2sXht1eis7vL, PID: 17894551; Wagner, P.L., Hyjek, E., Vazquez, M.F., Meherally, D., Liu, Y.F., Chadwick, P.A., CXCL12 and CXCR4 in adenocarcinoma of the lung: association with metastasis and survival (2009) J Thorac Cardiovasc Surg, 137 (3), pp. 615-621. , COI: 1:CAS:528:DC%2BD1MXktVyltb4%3D, PID: 19258077; Smith, M.C., Luker, K.E., Garbow, J.R., Prior, J.L., Jackson, E., Piwnica-Worms, D., CXCR4 regulates growth of both primary and metastatic breast cancer (2004) Cancer Res, 64 (23), pp. 8604-8612. , COI: 1:CAS:528:DC%2BD2cXhtVCjs73P, PID: 15574767; Cai, J., Kandagatla, P., Singareddy, R., Kropinski, A., Sheng, S., Cher, M.L., Androgens Induce Functional CXCR4 through ERG Factor Expression in TMPRSS2-ERG Fusion-Positive Prostate Cancer Cells (2010) Transl Oncol, 3 (3), pp. 195-203. , PID: 20563261; Carlisle, A.J., Lyttle, C.A., Carlisle, R.Y., Maris, J.M., CXCR4 expression heterogeneity in neuroblastoma cells due to ligand-independent regulation (2009) Mol Cancer, 8, p. 126. , PID: 20028517; Li, X., Ma, Q., Xu, Q., Liu, H., Lei, J., Duan, W., SDF-1/CXCR4 signaling induces pancreatic cancer cell invasion and epithelial-mesenchymal transition in vitro through non-canonical activation of Hedgehog pathway (2012) Cancer Lett, 322 (2), pp. 169-176. , COI: 1:CAS:528:DC%2BC38XlvFyhsro%3D, PID: 22450749; Huang, X.H., Chen, J.S., Wang, Q., Chen, X.L., Wen, L., Chen, L.Z., miR-338-3p suppresses invasion of liver cancer cell by targeting smoothened (2011) J Pathol, 225 (3), pp. 463-472. , COI: 1:CAS:528:DC%2BC3MXht1yhtLnP, PID: 21671467; Sun, K., Deng, H.J., Lei, S.T., Dong, J.Q., Li, G.X., miRNA-338-3p suppresses cell growth of human colorectal carcinoma by targeting smoothened (2013) World J Gastroenterol, 19 (14), pp. 2197-2207. , COI: 1:CAS:528:DC%2BC3sXmsFGmtbc%3D, PID: 23599646; Ok, S., Kim, S.M., Kim, C., Nam, D., Shim, B.S., Kim, S.H., Emodin inhibits invasion and migration of prostate and lung cancer cells by downregulating the expression of chemokine receptor CXCR4 (2012) Immunopharmacol Immunotoxicol, 34 (5), pp. 768-778. , COI: 1:CAS:528:DC%2BC38XhtlCrurnF, PID: 22299827; Shanmugam, M.K., Manu, K.A., Ong, T.H., Ramachandran, L., Surana, R., Bist, P., Inhibition of CXCR4/CXCL12 signaling axis by ursolic acid leads to suppression of metastasis in transgenic adenocarcinoma of mouse prostate model (2011) Int J Cancer, 129 (7), pp. 1552-1563. , COI: 1:CAS:528:DC%2BC3MXpt1yhsro%3D, PID: 21480220; Weinberg, R.A., (2014) The Biology of Cancer Garland Science, , Taylor & Francis Group, LLC, New York | |
dcterms.source | Scopus |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- avatar_scholar_128.png
- Size:
- 2.73 KB
- Format:
- Portable Network Graphics
- Description: