Tecoma stans: Alkaloid profile and antimicrobial activity

Loading...
Thumbnail Image

Date

2019

Journal Title

Journal ISSN

Volume Title

Type

Article

Publisher

Wolters Kluwer--Medknow Publications

Series Info

Journal of Pharmacy & Bioallied Sciences;Volume: 11 Issue: 4 Pages: 341-347

Abstract

Aim: Tecoma stans (L.) Kunth is a promising species in the trumpet creeper family Bignoniaceae. This study aimed at showing the antibacterial and antifungal potentials of T. stans methanolic leaf extract (TSME) correlated to its phytoconstituents. Materials and Methods: The antimicrobial potential of TSME was evaluated using agar diffusion method. The main alkaloids were separated on silica gel column and identified using nuclear magnetic resonance spectral analysis. Molecular docking was performed for the isolated compounds against MurD ligase, penicillin-binding protein, and dihydropteroate synthase enzyme to rationalize the observed antibacterial effect. Results and Discussion: TSME showed significant antibacterial effect against all tested microorganisms with comparable minimum inhibitory concentration (MIC) to the ampicillin and gentamicin with MIC values ranging between 0.98 and 1.95 µg/mL, in addition to a promising antifungal effect when compared to amphotericin with MIC values 3.9 and 15.63 µg/mL for Aspergillus flavus and Candida albicans, respectively. Several alkaloids were separated, purified, and identified as tecostanine, 4-OH tecomanine, 5-hydroxyskytanthine, and tecomanine, which were previously isolated from T. stans. The docking study showed that the alkaloids bind in a similar fashion to the co-crystallized ligands of the crystal structures of MurD ligase. The binding poses and scores in the case of penicillin-binding protein and dihydropteroate synthase did not match the co-crystallized ligands in their crystal structures. The in silico results suggest an antibacterial mechanism that involves the inhibition of MurD ligase. Conclusion: T. stans alkaloids could represent the basic skeleton for a powerful antimicrobial agent.

Description

MSA Google Scholar

Keywords

University of Alkaloid, antibacterial, molecular docking, Tecoma stans

Citation

1. Savoia D. Plant-derived antimicrobial compounds: alternatives to antibiotics. Future Microbiol. 2012;7:979–90. [PubMed] [Google Scholar] 2. Maas PJM. Flora neotropica. Organ Flora Neotrop. 1986;18:225. [Google Scholar] 3. Choudhury S, Datta S, Das Talukdar A, Duttachoudhury M. Phytochemistry of the Family Bignoniaceae—a review. Assam Univ J Sci Technol Biol Environ Sci. 2011;7:975–2773. [Google Scholar] 4. Dickinson EM, Jones G. Pyrindane alkaloids from Tecoma stans. Tetrahedron. 1969;25:1523–29. [Google Scholar] 5. Kunapuli SP, Vaidyanathan CS. Indolic compounds in the leaves of Tecoma stans. Phytochemistry. 1984;23:1826–27. [Google Scholar] 6. Lins AP, Felicio JDA. Monoterpene alkaloids from Tecoma stans. Phytochemistry. 1993;34:876–8. [Google Scholar] 7. Costantino L, Raimondi L, Pirisino R, Brunetti T, Pessotto P, Giannessi F, et al. Isolation and pharmacological activities of the Tecoma stans alkaloids. Farmaco. 2003;58:781–5. [PubMed] [Google Scholar] 8. Marzouk M, Gamal-Eldeen A, Mohamed M, El-Sayed M. Anti-proliferative and antioxidant constituents from Tecoma stans. Z Naturforsch C. 2006;61:783–91. [PubMed] [Google Scholar] 9. Marzouk MSA, Gamal-Eldeenb AM, Mohamed MA, El-Sayed M. Antioxidant and anti-proliferative active constituents of Tecoma stans against tumor cell lines. Nat Prod Commun. 2006;1:735–43. [Google Scholar] 10. Aguilar-Santamaría L, Ramírez G, Nicasio P, Alegría-Reyes C, Herrera-Arellano A. Antidiabetic activities of Tecoma stans (L.) Juss. ex Kunth. J Ethnopharmacol. 2009;124:284–8. [PubMed] [Google Scholar] 11. Govindappa M, Sadananda TS, Channabasava R, Raghavendra VB. In vitro anti-inflammatory, lipoxygenase, xanthine oxidase and acetycholinesterase inhibitory activity of Tecoma stans (L.) Juss. ex Kunth. Int J Pharma Bio Sci. 2011;2:275–85. [Google Scholar] 12. Al-Azzawi AM, Al-Khateeb E, Al-Sameraei K, Al-Juboori AG. Antibacterial activity and the histopathological study of crude extracts and isolated tecomine from Tecoma stans Bignoniaceae in Iraq. Pharmacognosy Res. 2012;4:37–43. [PMC free article] [PubMed] [Google Scholar] 13. Senthilkumar CS, Kumar MS, Pandian MR. In vitro antibacterial activity of crude leaf extracts from Tecoma stans (L) Juss. Et Kunth, Coleus forskohlii and Pogostemon patchouli against human pathogenic bacteria. Int J Pharm Tech Res. 2010;2:438–42. [Google Scholar] 14. Mickymaray S, Al Aboody MS, Rath PK, Annamalai P, Nooruddin T. Screening and antibacterial efficacy of selected Indian medicinal plants. Asian Pac J Trop Biomed. 2016;6:185–91. [Google Scholar] 15. Valgas C, de Souza SM, Smânia EFA, Smânia JA. Screening methods to determine antibacterial activity of natural products. Brazilian J Microbiol. 2007;38:369–80. [Google Scholar] 16. Princy KR, Sripathi R, Dharani J, Ravi S, et al. Molecular docking studies of alkaloids from Desmodium triflorum against bacterial proteins. J Pharm Sci Res. 2017;9:1882–5. [Google Scholar] 17. Bertrand JA, Auger G, Fanchon E, Martin L, Blanot D, van Heijenoort J, et al. Crystal structure of UDP-N-acetylmuramoyl-L-alanine:D-glutamate ligase from Escherichia coli. Embo J. 1997;16:3416–25. [PMC free article] [PubMed] [Google Scholar] 18. Zidar N, Tomasić T, Sink R, Rupnik V, Kovac A, Turk S, et al. Discovery of novel 5-benzylidenerhodanine and 5-benzylidenethiazolidine-2,4-dione inhibitors of MurD ligase. J Med Chem. 2010;53:6584–94. [PubMed] [Google Scholar] 19. Han S, Caspers N, Zaniewski RP, Lacey BM, Tomaras AP, Feng X, et al. Distinctive attributes of β-lactam target proteins in Acinetobacter baumannii relevant to development of new antibiotics. J Am Chem Soc. 2011;133:20536–45. [PubMed] [Google Scholar] 20. Yun MK, Wu Y, Li Z, Zhao Y, Waddell MB, Ferreira AM, et al. Catalysis and sulfa drug resistance in dihydropteroate synthase. Science. 2012;335:1110–4. [PMC free article] [PubMed] [Google Scholar] 21. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009;30:2785–91. [PMC free article] [PubMed] [Google Scholar] 22. Biovia DS. CA, USA: San Diego; 2017. Discovery studio visualizer. [Google Scholar] 23. Gellatly SL, Hancock RE. Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathog Dis. 2013;67:159–73. [PubMed] [Google Scholar] 24. Hidayah N. Review article Salmonella: a foodborne pathogen. Int Food Res J. 2011;473:465–73. [Google Scholar] 25. Cardoso O, Alves AF, Leitão R. Surveillance of antimicrobial susceptibility of Pseudomonas aeruginosa clinical isolates from a central hospital in Portugal. J Antimicrob Chemother. 2007;60:452-–4. [PubMed] [Google Scholar] 26. Vila J, Sáez-López E, Johnson JR, Römling U, Dobrindt U, Cantón R, et al. Escherichia coli: an old friend with new tidings. FEMS Microbiol Rev. 2016;40:437-–63. [PubMed] [Google Scholar] 27. Paczosa MK, Mecsas J. Klebsiella pneumoniae: going on the offense with a strong defense. Microbiol Mol Biol Rev. 2016;80:629-–61. [PMC free article] [PubMed] [Google Scholar] 28. Nielsen TRH, Kuete V, Jäger AK, Marion Meyer JJ, Lall N. Antimicrobial activity of selected South African medicinal plants. BMC Complement Altern Med. 2012;12:1086. [PMC free article] [PubMed] [Google Scholar] 29. Thomer L, Schneewind O, Missiakas D. Pathogenesis of Staphylococcus aureus bloodstream infections. Annu Rev Pathol. 2016;11:343-–64. [PMC free article] [PubMed] [Google Scholar] 30. Henriques-Normark B, Tuomanen EI. The pneumococcus: epidemiology, microbiology, and pathogenesis. Cold Spring Harb Perspect Med. 2013;3:a010215. [PMC free article] [PubMed] [Google Scholar] 31. Mayer FL, Wilson D, Hube B. Candida albicans pathogenicity mechanisms. Virulence. 2013;4:119-–28. [PMC free article] [PubMed] [Google Scholar] 32. Costantino L, Lins AP, Barlocco D, Celotti F, el-Abady SA, Brunetti T, et al. Characterization and pharmacological actions of tecostanine, an alkaloid of Tecoma stans. Pharmazie. 2003;58:140-–2. [PubMed] [Google Scholar] 33. Nicola G, Abagyan R. Current protocols in microbiology. Hoboken, NJ: John Wiley & Sons; 2009. Structure-based approaches to antibiotic drug discovery. p. Unit 17.2. [Google Scholar] 34. Griffith EC, Wallace MJ, Wu Y, Kumar G, Gajewski S, Jackson P, et al. The structural and functional basis for recurring sulfa drug resistance mutations in Staphylococcus aureus dihydropteroate synthase. Front Microbiol. 2018;9:1369. [PMC free article] [PubMed] [Google Scholar] 35. Otzen T, Wempe EG, Kunz B, Bartels R, Lehwark-Yvetot G, Hänsel W, et al. Folate-synthesizing enzyme system as target for development of inhibitors and inhibitor combinations against Candida albicans—synthesis and biological activity of new 2,4-diaminopyrimidines and 4’-substituted 4-aminodiphenyl sulfones. J Med Chem. 2004;47:240-–53. [PubMed] [Google Scholar] 36. Zervosen A, Sauvage E, Frère JM, Charlier P, Luxen A. Development of new drugs for an old target: the penicillin binding proteins. Molecules. 2012;17:12478-–505. [PMC free article] [PubMed] [Google Scholar] 37. Meng XY, Zhang HX, Mezei M, Cui M. Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des. 2011;7:146-–57.

Full Text link