Monitoring and optimization of diclofenac removal by adsorption technique using in-line potentiometric analyzer

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorYehia A.M.
dc.contributor.authorElbalkiny H.T.
dc.contributor.authorRiad S.M.
dc.contributor.authorElsaharty Y.S.
dc.contributor.otherAnalytical Chemistry Department
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherCairo University
dc.contributor.otherKasr-El Aini 13 Street
dc.contributor.otherCairo
dc.contributor.other11562
dc.contributor.otherEgypt; Chemistry Department
dc.contributor.otherSchool of Pharmacy and Pharmaceutical Industries
dc.contributor.otherBadr University in Cairo
dc.contributor.otherBadr City
dc.contributor.otherCairo 11829
dc.contributor.otherEgypt; Analytical Chemistry Department
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherOctober University for Modern Sciences and Arts (MSA)
dc.contributor.other6th October City
dc.contributor.other11787
dc.contributor.otherEgypt
dc.date.accessioned2020-01-09T20:40:36Z
dc.date.available2020-01-09T20:40:36Z
dc.date.issued2019
dc.descriptionScopus
dc.description.abstractDiclofenac (DICLO) is one of the most prescribed non-steroidal anti-inflammatory drugs worldwide. The presence of DICLO residues in aquatic environment either from industrial or hospital wastewater has harmful effects on many organisms. In this contribution, the adsorption of DICLO on granulated active carbon and mesoporous silica nanoparticles was optimized in order to remove those residues from water. The tracking of DICLO was done using in-line potentiometric ion-selective electrodes (ISE) through the whole experiments. The constructed electrode allows tracking of DICLO residues in real time. A central composite design was applied, inspecting the pH, initial concentration, adsorbent loading concentration and adsorbent type effects on the adsorption process, the results showed that the pH effect was most significant; pH 5 gave best results. The adsorption kinetics of these adsorbents have been investigated and the results indicated that the adsorption process followed the pseudo-second-order kinetic model. The adsorption isotherm data were analyzed by both Langmuir and Freundlich models and later provides better fit of the experimental data. The removal efficiency was about ~89% upon applying the optimum set of experimental conditions in time < 60 min. In-line monitoring is considered a green protocol, that should be carried out also at the pharmaceutical industry scale due to the high selectivity, lack of harmful waste generation and minimal solvent use. � 2019 Elsevier B.V.en_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=20922&tip=sid&clean=0
dc.identifier.doihttps://doi.org/10.1016/j.microc.2019.05.005
dc.identifier.doiPubMed ID :
dc.identifier.issn0026265X
dc.identifier.otherhttps://doi.org/10.1016/j.microc.2019.05.005
dc.identifier.otherPubMed ID :
dc.identifier.urihttps://t.ly/NXNZK
dc.language.isoEnglishen_US
dc.publisherElsevier Inc.en_US
dc.relation.ispartofseriesMicrochemical Journal
dc.relation.ispartofseries148
dc.subjectAdsorptionen_US
dc.subjectCentral composite designen_US
dc.subjectDiclofenacen_US
dc.subjectGranulated active charcoalen_US
dc.subjectIon selective electrodeen_US
dc.subjectMesoporous silica nanoparticlesen_US
dc.subjectWastewater treatmenten_US
dc.titleMonitoring and optimization of diclofenac removal by adsorption technique using in-line potentiometric analyzeren_US
dc.typeArticleen_US
dcterms.isReferencedByEnglert, B., Method 1694: Pharmaceuticals and Personal Care Products in Water, Soil, Sediment, and Biosolids by HPLC/MS/MS (2007), pp. 1-72. , US Environmental Protection Agency (EPA) EPA-821-R-08-002; Xiao, Y., Chang, H., Jia, A., Hu, J., Trace analysis of quinolone and fluoroquinolone antibiotics from wastewaters by liquid chromatography�electrospray tandem mass spectrometry (2008) J. Chromatogr. A, 1214, pp. 100-108; Celiz, M.D., P�rez, S., Barcel�, D., Aga, D.S., Trace analysis of polar pharmaceuticals in wastewater by LC-MS-MS: comparison of membrane bioreactor and activated sludge systems (2009) J. Chromatogr. Sci., 47, pp. 19-25; Cleuvers, M., Aquatic ecotoxicity of pharmaceuticals including the assessment of combination effects (2003) Toxicol. Lett., 142, pp. 185-194; Gadipelly, C., P�rez-Gonz�lez, A., Yadav, G.D., Ortiz, I., Ib��ez, R., Rathod, V.K., Marathe, K.V., Pharmaceutical industry wastewater: review of the technologies for water treatment and reuse (2014) Ind. Eng. Chem. Res., 53, pp. 11571-11592; Gros, M., Petrovi?, M., Ginebreda, A., Barcel�, D., Removal of pharmaceuticals during wastewater treatment and environmental risk assessment using hazard indexes (2010) Environ. Int., 36, pp. 15-26; Fatta-Kassinos, D., Hapeshi, E., Achilleos, A., Meric, S., Gros, M., Petrovic, M., Barcelo, D., Existence of pharmaceutical compounds in tertiary treated urban wastewater that is utilized for reuse applications (2011) Water Resour. Manag., 25, pp. 1183-1193; Oaks, J.L., Gilbert, M., Virani, M.Z., Watson, R.T., Meteyer, C.U., Rideout, B.A., Shivaprasad, H., Arshad, M., Diclofenac residues as the cause of vulture population decline in Pakistan (2004) Nature, 427, pp. 630-633; Jane, K., The Science and Technology of Industrial Water Treatment, Reverse Osmosis Membrane Fouling Control (2010), CRC Press United States of America; Tiravanti, G., Petruzzelli, D., Passino, R., Pretreatment of tannery wastewaters by an ion exchange process for Cr (III) removal and recovery (1997) Water Sci. Technol., 36, pp. 197-207; Rajkumar, D., Palanivelu, K., Electrochemical treatment of industrial wastewater (2004) J. Hazard. Mater., 113, pp. 123-129; Wang, S., Peng, Y., Natural zeolites as effective adsorbents in water and wastewater treatment (2010) Chem. Eng. J., 156, pp. 11-24; Lehr, J.H., Keeley, J., Domestic, Municipal, and Industrial Water Supply and Waste Disposal (2005), Wiley Interscience; Thiele, S., Adsorption of the antibiotic pharmaceutical compound sulfapyridine by a long-term differently fertilized loess Chernozem (2000) J. Soil Sci. Plant Nutr., 163, pp. 589-594; Karanfil, T., Kitis, M., Kilduff, J.E., Wigton, A., Role of granular activated carbon surface chemistry on the adsorption of organic compounds. 2. Natural organic matter (1999) Environ. Sci. Technol., 33, pp. 3225-3233; Lorphensri, O., Intravijit, J., Sabatini, D.A., Kibbey, T.C., Osathaphan, K., Saiwan, C., Sorption of acetaminophen, 17?-ethynyl estradiol, nalidixic acid, and norfloxacin to silica, alumina, and a hydrophobic medium (2006) Water Res., 40, pp. 1481-1491; Attia, T.M.S., Hu, X.L., Yin, D.Q., Synthesized magnetic nanoparticles coated zeolite for the adsorption of pharmaceutical compounds from aqueous solution using batch and column studies (2013) Chemosphere, 93, pp. 2076-2085; Antunes, M., Esteves, V.I., Gu�gan, R., Crespo, J.S., Fernandes, A.N., Giovanela, M., Removal of diclofenac sodium from aqueous solution by Isabel grape bagasse (2012) Chem. Eng. J., 192, pp. 114-121; Baccar, R., Sarr�, M., Bouzid, J., Feki, M., Bl�nquez, P., Removal of pharmaceutical compounds by activated carbon prepared from agricultural by-product (2012) Chem. Eng. J., 211, pp. 310-317; Raki?, V., Rac, V., Krmar, M., Otman, O., Auroux, A., The adsorption of pharmaceutically active compounds from aqueous solutions onto activated carbons (2015) J. Hazard. Mater., 282, pp. 141-149; Jung, C., Boateng, L.K., Flora, J.R., Oh, J., Braswell, M.C., Son, A., Yoon, Y., Competitive adsorption of selected non-steroidal anti-inflammatory drugs on activated biochars: experimental and molecular modeling study (2015) Chem. Eng. J., 264, pp. 1-9; Bui, T.X., Choi, H., Adsorptive removal of selected pharmaceuticals by mesoporous silica SBA-15 (2009) J. Hazard. Mater., 168, pp. 602-608; Bui, T.X., Pham, V.H., Le, S.T., Choi, H., Adsorption of pharmaceuticals onto trimethylsilylated mesoporous SBA-15 (2013) J. Hazard. Mater., 254, pp. 345-353; Abd El-Rahman, M.K., Zaazaa, H.E., ElDin, N.B., Moustafa, A.A., Just-dip-it (potentiometric ion-selective electrode): an innovative way of greening analytical chemistry (2016) ACS Sustain. Chem. Eng., 4, pp. 3122-3132; Ibrahim, F.A., Al-Ghobashy, M.A., El-Rahman, M.K.A., Abo-Elmagd, I.F., Optimization and in line potentiometric monitoring of enhanced photocatalytic degradation kinetics of gemifloxacin using TiO 2 nanoparticles/H 2 O 2 (2017) Environ. Sci. Pollut. Res., 24, pp. 23880-23892; Wang, Y., Bryan, C., Xu, H., Pohl, P., Yang, Y., Brinker, C.J., Interface chemistry of nanostructured materials: ion adsorption on mesoporous alumina (2002) J. Colloid Interface Sci., 254, pp. 23-30; Furlan, F.R., da Silva, L.G.D.M., Morgado, A.F., de Souza, A.A.U., Removal of reactive dyes from aqueous solutions using combined coagulation/flocculation and adsorption on activated carbon (2010) Resour. Conserv. Recycl., 54, pp. 283-290; Pharmacopoeia, B., The Stationery Office on Behalf of the Medicines and Healthcare Products Regulatory Agency (MHRA)-� Crown Copyright (2014); Umezawa, Y., Buhlmann, P., Umezawa, K., Tohda, K., Amemiya, S., Potentiometric selectivity coefficients of ion-selective electrodes. Part I. Inorganic cations (2000) Pure Appl. Chem., 72, pp. 1851-2082; Analytical Chemistry Division, I.U.P.A.C., Commission on Analytical Nomenclature (2000) Pure Appl. Chem., 72, pp. 1851-2082; Box, G.E., Behnken, D.W., Some new three level designs for the study of quantitative variables (1960) Technometrics, 2, pp. 455-475; Azari, A., Kalantary, R.R., Ghanizadeh, G., Kakavandi, B., Farzadkia, M., Ahmadi, E., Iron�silver oxide nanoadsorbent synthesized by co-precipitation process for fluoride removal from aqueous solution and its adsorption mechanism (2015) RSC Adv., 5, pp. 87377-87391; Sulaymon, A.H., Abood, W.M., Equilibrium and kinetic study of the adsorption of reactive blue, red, and yellow dyes onto activated carbon and barley husk (2014) Desalin. Water Treat., 52, pp. 5485-5493; Rezaei Kalantry, R., Jonidi Jafari, A., Esrafili, A., Kakavandi, B., Gholizadeh, A., Azari, A., Optimization and evaluation of reactive dye adsorption on magnetic composite of activated carbon and iron oxide (2016) Desalin. Water Treat., 57, pp. 6411-6422; Westerhoff, P., Yoon, Y., Snyder, S., Wert, E., Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes (2005) Environ. Sci. Technol., 39, pp. 6649-6663; Kakavandi, B., Kalantary, R.R., Farzadkia, M., Mahvi, A.H., Esrafili, A., Azari, A., Yari, A.R., Javid, A.B., Enhanced chromium (VI) removal using activated carbon modified by zero valent iron and silver bimetallic nanoparticles (2014) J. Environ. Health Sci. Eng., 12, p. 115; Ahmadi, M., Foladivanda, M., Jaafarzadeh, N., Ramezani, Z., Ramavandi, B., Jorfi, S., Kakavandi, B., Synthesis of chitosan zero-valent iron nanoparticles-supported for cadmium removal: characterization, optimization and modeling approach (2017) J. Water Supply Res. Technol. AQUA, 66, pp. 116-130; Langmuir, I., The constitution and fundamental properties of solids and liquids. Part I. Solids (1916) J. Am. Chem. Soc., 38, pp. 2221-2295; Freundlich, H., �ber die adsorption in l�sungen, Zeitschrift f�r physikalische Chemie (1907), 57, pp. 385-470; Piccin, J., Dotto, G., Pinto, L., Adsorption isotherms and thermochemical data of FD&C Red n 40 binding by chitosan (2011) Braz. J. Chem. Eng., 28, pp. 295-304; Foo, K.Y., Hameed, B.H., Insights into the modeling of adsorption isotherm systems (2010) Chem. Eng. J., 156, pp. 2-10; Halsey, G.D., (1952), pp. 259-269. , The role of surface heterogeneity in adsorption, Adv. Catal., Elsevier; Nassar, M.Y., Mohamed, T.Y., Ahmed, I.S., Samir, I., MgO nanostructure via a sol-gel combustion synthesis method using different fuels: an efficient nano-adsorbent for the removal of some anionic textile dyes (2017) J. Mol. Liq., 225, pp. 730-740; Goyne, K.W., Chorover, J., Kubicki, J.D., Zimmerman, A.R., Brantley, S.L., Sorption of the antibiotic ofloxacin to mesoporous and nonporous alumina and silica (2005) J. Colloid Interface Sci., 283, pp. 160-170
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
avatar_scholar_128.png
Size:
2.73 KB
Format:
Portable Network Graphics
Description: