Effect of freshwaterwashing pretreatment on sargassum muticum as a feedstock for biogas production

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorMilledge J.J.
dc.contributor.authorNielsen B.V.
dc.contributor.authorSadek M.S.
dc.contributor.authorHarvey P.J.
dc.contributor.otherFaculty of Engineering and Science
dc.contributor.otherAlgae Biotechnology Research Group
dc.contributor.otherUniversity of Greenwich
dc.contributor.otherCentral Avenue
dc.contributor.otherChatham Maritime
dc.contributor.otherKent
dc.contributor.otherME4 4TB
dc.contributor.otherUnited Kingdom; Pharmacognosy Department
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherOctober University of Modern Sciences and Arts
dc.contributor.other6th October City
dc.contributor.other11787
dc.contributor.otherEgypt
dc.date.accessioned2020-01-09T20:41:03Z
dc.date.available2020-01-09T20:41:03Z
dc.date.issued2018
dc.descriptionScopus
dc.description.abstractThe pretreatment of seaweed by washing in freshwater is often used in seaweed biofuel research studies. However, the effect of washing seaweed prior to anaerobic digestion (AD) does not appear to have been greatly studied. This study examines washing Sargassum muticum with freshwater and its effect on ultimate and proximate analyses, salt content, methane production from anaerobic digestion, and leachate loss from ensiling. Washing with freshwater significantly (p < 0.01) increased moisture content (unwashed 85.6%, washed 89.1%) but significantly (p < 0.05) reduced ash (unwashed 32.7% dry weight dw, washed 30.6% dw) and salt content (unwashed ash containing 51.5%, washed 42.5%). The dry biomass higher heating value was significantly (p < 0.05) increased by washing due to the lower ash content (11.5 to 12.6 kJ g-1 dw). There was no significant change in the protein or lipid content, although washing increased the nitrogen content (3.85-4.77% dw). Washing significantly (p < 0.05) increased leachate losses during ensiling, with total leachate losses increasing after washing (12.7-25.2%). The methane yield from anaerobic digestion (28 days) was not statistically significantly different (p > 0.05) between unwashed (0.225 L CH4 g-1 VS) and washed samples (0.177 L CH4 g-1 VS). However, washing delayed biomethane production. � 2018 by the authors. Licensee MDPI, Basel, Switzerland.en_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=62932&tip=sid&clean=0
dc.identifier.doihttps://doi.org/10.3390/en11071771
dc.identifier.doiPubMed ID :
dc.identifier.issn19961073
dc.identifier.otherhttps://doi.org/10.3390/en11071771
dc.identifier.otherPubMed ID :
dc.identifier.urihttps://t.ly/epW7O
dc.language.isoEnglishen_US
dc.publisherMDPI AGen_US
dc.relation.ispartofseriesEnergies
dc.relation.ispartofseries11
dc.subjectAnaerobic digestionen_US
dc.subjectEnsiling;macroalgaeen_US
dc.subjectPretreatmenten_US
dc.subjectSargassummuticum;washingen_US
dc.subjectSeaweeden_US
dc.subjectCalorific valueen_US
dc.subjectMethaneen_US
dc.subjectSeaweeden_US
dc.subjectWashingen_US
dc.subjectWateren_US
dc.subjectBiogas productionen_US
dc.subjectEffect of washingen_US
dc.subjectHigher heating valueen_US
dc.subjectMacro-algaeen_US
dc.subjectMethane productionen_US
dc.subjectPre-Treatmenten_US
dc.subjectProximate analysisen_US
dc.subjectSargassum muticumen_US
dc.subjectAnaerobic digestionen_US
dc.titleEffect of freshwaterwashing pretreatment on sargassum muticum as a feedstock for biogas productionen_US
dc.typeArticleen_US
dcterms.isReferencedByMilledge, J.J., Harvey, P.J., Potential process 'hurdles' in the use of macroalgae as feedstock for biofuel production in the British Isles (2016) J. Chem. Technol. Biotechnol., 91, pp. 2221-2234; Rajkumar, R., Yaakob, Z., Takriff, M.S., Potential of the micro and macro algae for biofuel production: A brief review (2014) BioResources, 9, pp. 1606-1633; Milledge, J.J., Nielsen, B.V., Bailey, D., High-value products from macroalgae: The potential uses of the invasive brown seaweed, Sargassum muticum (2015) Rev. Environ. Sci. Biotechnol., 15, pp. 67-88; Balboa, E., Moure, A., Dom�nguez, H., Valorization of Sargassum muticum biomass according to the biorefinery concept (2015) Mar. Drugs, 13, pp. 3745-3760; Soto, M., Vazquez, M.A., De Vega, A., Vilarino, J.M., Fernandez, G., De Vicente, M.E., Methane potential and anaerobic treatment feasibility of Sargassum muticum (2015) Bioresour. Technol., 189, pp. 53-61; Gonzalez-Lopez, N., Moure, A., Dominguez, H., Hydrothermal fractionation of Sargassum muticum biomass (2012) J. Appl. Phycol., 24, pp. 1569-1578; Sutherland, A., Varela, J., Comparison of various microbial inocula for the efficient anaerobic digestion of Laminaria hyperborea (2014) BMC Biotechnol., 14, p. 7; Mayfield, S.P., Consortium for Algal Biofuel Commercialization (CAB-COMM) Final Report, , https://www.osti.gov/servlets/purl/1234700(accessedon12May2016); Barbot, Y., Thomsen, C., Thomsen, L., Benz, R., Anaerobic digestion of Laminaria japonica waste from industrial production residues in laboratory-and pilot-scale (2015) Mar. Drugs, 13, pp. 5947-5975; Chisti, Y., Constraints to commercialization of algal fuels (2013) J. Biotechnol., 167, pp. 201-214; Yanagisawa, M., Nakamura, K., Ariga, O., Nakasaki, K., Production of high concentrations of bioethanol from seaweeds that contain easily hydrolyzable polysaccharides (2011) Process Biochem., 46, pp. 2111-2116; Wang, X., Liu, X., Wang, G., Two-stage hydrolysis of invasive algal feedstock for ethanol fermentation (2011) J. Integr. Plant Biol., 53, pp. 246-252; Park, J.H., Yoon, J.J., Park, H.D., Lim, D.J., Kim, S.H., Anaerobic digestibility of algal bioethanol residue (2012) Bioresour. Technol., 113, pp. 78-82; Ross, A.B., Jones, J.M., Kubacki, M.L., Bridgeman, T., Classification of macroalgae as fuel and its thermochemical behaviour (2008) Bioresour. Technol., 99, pp. 6494-6504; Kumar, S., Gupta, R., Kumar, G., Sahoo, D., Kuhad, R.C., Bioethanol production from Gracilaria verrucosa, a red alga, in a biorefinery approach (2013) Bioresour. Technol., 135, pp. 150-156; Choi, J., Choi, J.W., Suh, D.J., Ha, J.M., Hwang, J.W., Jung, H.W., Lee, K.Y., Woo, H.C., Production of brown algae pyrolysis oils for liquid biofuels depending on the chemical pretreatment methods (2014) Energy Convers. Manag., 86, pp. 371-378; McKennedy, J., Sherlock, O., Anaerobic digestion of marine macroalgae: A review (2015) Renew. Sustain. Energy Rev., 52, pp. 1781-1790; Suutari, M., Leskinen, E., Fagerstedt, K., Kuparinen, J., Kuuppo, P., Blomster, J., Macroalgae in biofuel production (2015) Phycol. Res., 63, pp. 1-18; Tabassum, M.R., Xia, A., Murphy, J.D., The effect of seasonal variation on biomethane production from seaweed and on application as a gaseous transport biofuel (2016) Bioresour. Technol., 209, pp. 213-219; Nikolaison, L., Dahl, J., Bech, K.S., Bruhn, A., Rasmussen, M.B., Bjerre, A.B., Nielsen, H.B., Kadar, Z., Energy production from macroalgae (2012) Proceedings of the 20th European Biomass Conference and Exhibition, pp. 91-93. , Milan, Italy 18-22 June; Bruhn, A., Dahl, J., Nielsen, H.B., Nikolaisen, L., Rasmussen, M.B., Markager, S., Olesen, B., Jensen, P.D., Bioenergy potential of Ulva lactuca: Biomass yield, methane production and combustion (2011) Bioresour. Technol., 102, pp. 2595-2604; Adams, J.M.M., Schmidt, A., Gallagher, J.A., The impact of sample preparation of the macroalgae Laminaria digitata on the production of the biofuels bioethanol and biomethane (2015) J. Appl. Phycol., 27, pp. 985-991; Redden, H., Milledge, J.J., Greenwell, H.C., Dyer, P.W., Harvey, P.J., Changes in higher heating value and ash content of seaweed during ensiling (2016) J. Appl. Phycol., 29, pp. 1037-1046; Herrmann, C., FitzGerald, J., O'Shea, R., Xia, A., O'Kiely, P., Murphy, J.D., Ensiling of seaweed for a seaweed biofuel industry (2015) Bioresour. Technol., 196, pp. 301-313; Cabrita, A.R.J., Maia, M.R.G., Sousa-Pinto, I., Fonseca, A.J.M., Ensilage of seaweeds from an integrated multi-trophic aquaculture system (2017) Algal Res., 24, pp. 290-298; Milledge, J.J., Harvey, P.J., Ensilage and anaerobic digestion of Sargassum muticum (2016) J. Appl. Phycol., 28, pp. 3021-3030; Jard, G., Marfaing, H., Carrere, H., Delgenes, J.P., Steyer, J.P., Dumas, C., French Brittany macroalgae screening: Composition and methane potential for potential alternative sources of energy and products (2013) Bioresour. Technol., 144, pp. 492-498; Solid biofuels (2009) Determination of Moisture Content, pp. 14774-14782. , British Standards Institution (BSI) . Oven dry method. Total moisture. Simplified method. In BS EN BSI: London, UK, 2009; Solid biofuels-determination of ash content (2009) BS en, p. 14775. , BSI BSI: London, UK 2009; Pearson, D., (1973) Laboratory Techniques in Food Analysis, , Butterworth: London, UK; Skoog, D.A., (2004) Fundamentals of Analytical Chemistry 8th; International Student, , Ed.; Thomson/Brooks/Cole: London, UK; Redmile-Gordon, M.A., Armenise, E., White, R.P., Hirsch, P.R., Goulding, K.W.T., A comparison of two colorimetric assays, based upon Lowry and Bradford techniques, to estimate total protein in soil extracts (2013) Soil. Biol. Biochem., 67, pp. 166-173; Matyash, V., Liebisch, G., Kurzchalia, T.V., Shevchenko, A., Schwudke, D., Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics (2008) J. Lipid Res., 49, pp. 1137-1146; Determination of the gross heat of combustion (calorific value) (2010) BS en ISO, p. 1716. , British Standards Institution (BSI) ; BSI: London, UK, 2010; D�az-V�zquez, L.M., Rojas-P�rez, A., Fuentes-Caraballo, M., Robles-Ramos, I.V., Jena, U., Das, K.C., Demineralization of Sargassum spp (2015) Macroalgae Biomass: Selective Hydrothermal Liquefaction Process for Bio-oil Production, 3, pp. 1-11. , Front. Energy Res; Milledge, J.J., Staple, A., Harvey, P., Slow Pyrolysis as a Method for the Destruction of JapaneseWireweed, Sargassum muticum (2015) Environ. Nat. Resour. Res., 5, pp. 28-36; Balboa, E.M., Gallego-F�brega, C., Moure, A., Dom�nguez, H., Study of the seasonal variation on proximate composition of oven-dried Sargassum muticum biomass collected in Vigo Ria, Spain (2016) J. Appl. Phycol., 28, pp. 1943-1953; Wernberg, T., Thomsen, M.S., Staehr, P.A., Pedersen, M.F., Comparative phenology of Sargassum muticum and Halidrys siliquosa (Phaeophyceae: Fucales) in Limfjorden, Denmark (2001) Bot. Mar., 44, pp. 31-39; Merrill, A.L., Watts, B.K., (1955) Energy Values of Foods: Basis &Duration, , Slight Revised February 1973; US Department of Agriculture: Washington, DC, USA; Lourenco, S.O., Barbarino, E., Lavin, P.L., Marque, U.M.L., Aidar, E., Distribution of intracellular nitrogen in marine microalgae: Calculation of new nitrogen-to-protein conversion factors (2004) Eur. J. Phycol., 39, pp. 17-32; Angell, A.R., Mata, L., Nys, R., Paul, N.A., The protein content of seaweeds: A universal nitrogen-to-protein conversion factor of five (2015) J. Appl. Phycol., 28, pp. 511-524; L�pez, C.V.G., Garcia, M.D.C., Fernandez, F.G.A., Bustos, C.S., Chisti, Y., Sevilla, J.M.F., Protein measurements of microalgal and cyanobacterial biomass (2010) Bioresour. Technol., 101, pp. 7587-7591; Safi, C., Charton, M., Pignolet, O., Silvestre, F., Vaca-Garcia, C., Pontalier, P.-Y., Influence of microalgae cell wall characteristics on protein extractability and determination of nitrogen-to-protein conversion factors (2013) J. Appl. Phycol., 25, pp. 523-529; Hardouin, K., Burlot, A.S., Umami, A., Tanniou, A., Stiger-Pouvreau, V., Widowati, I., Bedoux, G., Bourgougnon, N., Biochemical and antiviral activities of enzymatic hydrolysates from different invasive French seaweeds (2014) J. Appl. Phycol., 26, pp. 1029-1042; Gorham, J., Lewey, S.A., Seasonal changes in the chemical composition of Sargassum muticum (1984) Mar Biol., 80, pp. 103-107; Tiwari, B., Troy, D., (2015) Seaweed Sustainability: Food and Non-Food Applications, , 1st ed.; Academic Press: Amsterdam, The Netherlands; Lenstra, W.J., Hal, J.W.V., Reith, J.H., Economic aspects of open ocean seaweed cultivation (2011) Proceedings of the Energy Research Center of the Netherlands, pp. 7-10. , Montpellier, France November; Streefland, M., Algae and aquatic biomass for a sustainable production of 2nd generation biofuels (2010) Macroalgae and Other Aquatic, , Deliverable 1.5-Report on Biofuel Production Processes from Micro; AquaFUELs: Brussels, Belgium; Shekhar, S.H.S., Lyons, G., McRoberts, C., McCall, D., Carmichael, E., Andrews, F., McCormack, R., Brown seaweed species from Strangford Lough: Compositional analyses of seaweed species and biostimulant formulations by rapid instrumental methods (2012) J. Appl. Phycol., 24, pp. 1141-1157; Vrsanska, M., Kumbar, V., A comparison of Biuret, Lowry and Bradford methods for measuring the egg's proteins (2015) Mendel Net, 22, pp. 394-398; Black, W.A.P., The preservation of seaweed by ensiling and bactericides (1955) J. Sci. Food Agric., 6, pp. 14-23; Genever, L., (2011) Making Grass Silage for Better Returns, , Agriculture and Horticulture Development Board (AHDB): Huntingdon, UK; Wang, M.S., Yang, C.H., Jia, L.J., Yu, K.F., Effect of lactobacillus buchneri and lactobacillus plantarum on the fermentation characteristics and aerobic stability of whipgrass silage in laboratory silos (2014) Grassl. Sci., 60, pp. 233-239; Davies, D.R., Merry, R.J., Williams, A.P., Bakewell, E.L., Leemans, D.K., Tweed, J.K., Proteolysis during ensilage of forages varying in soluble sugar content (1998) J. Dairy Sci., 81, pp. 444-453; Lindmark, J., Thorin, E., Bel Fdhila, R., Dahlquist, E., Effects of mixing on the result of anaerobic digestion: Review (2014) Renew. Sustain. Energy Rev., 40, pp. 1030-1047; Wu, B.X., Integration of mixing, heat transfer, and biochemical reaction kinetics in anaerobic methane fermentation (2012) Biotechnol. Bioeng., 109, pp. 2864-2874; Process Design Manual for Sludge Treatment and Disposal., , https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=132184, US Environmental Protection Agency (accessed on 13 December 2012; Jingura, R.M., Kamusoko, R., Methods for determination of biomethane potential of feedstocks: A review (2017) Biofuel Res. J., 4, pp. 573-586; Egan, S., Thomas, T., Kjelleberg, S., Unlocking the diversity and biotechnological potential of marine surface associated microbial communities (2008) Curr. Opin. Microbiol., 11, pp. 219-225; Dubilier, N., Bergin, C., Lott, C., Symbiotic diversity in marine animals: The art of harnessing chemosynthesis (2008) Nat. Rev. Microbiol., 6, pp. 725-740; Wahl, M., Goecke, F., Labes, A., Dobretsov, S., Weinberger, F., The second skin: Ecological role of epibiotic biofilms on marine organisms (2012) Front. Microbiol., 3, p. 292; Banks, C.J., Zhang, Y., Jiang, Y., Heaven, S., Trace element requirements for stable food waste digestion at elevated ammonia concentrations (2012) Bioresour. Technol., 104, pp. 127-135
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description:
Loading...
Thumbnail Image
Name:
energies-11-01771-v2.pdf
Size:
1.74 MB
Format:
Adobe Portable Document Format
Description: