Brain targeted rivastigmine mucoadhesive thermosensitive In situ gel: Optimization, in vitro evaluation, radiolabeling, in vivo pharmacokinetics and biodistribution
dc.Affiliation | October University for modern sciences and Arts (MSA) | |
dc.contributor.author | Abouhussein D.M.N. | |
dc.contributor.author | Khattab A. | |
dc.contributor.author | Bayoumi N.A. | |
dc.contributor.author | Mahmoud A.F. | |
dc.contributor.author | Sakr T.M. | |
dc.contributor.other | Pharmaceutics Department | |
dc.contributor.other | National Organization for Drug Control and Research (NODCAR) | |
dc.contributor.other | Giza | |
dc.contributor.other | Egypt; Labeled Compounds Department | |
dc.contributor.other | Hot Labs Center | |
dc.contributor.other | Atomic Energy Authority | |
dc.contributor.other | P.O. Box 13759 | |
dc.contributor.other | Cairo | |
dc.contributor.other | Egypt; Radioactive Isotopes and Generator Department | |
dc.contributor.other | Hot Labs Center | |
dc.contributor.other | Atomic Energy Authority | |
dc.contributor.other | P.O. Box 13759 | |
dc.contributor.other | Cairo | |
dc.contributor.other | Egypt; Pharmaceutics Chemistry Department | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | October University of Modern Sciences and Arts (MSA) | |
dc.contributor.other | Giza | |
dc.contributor.other | Egypt | |
dc.date.accessioned | 2020-01-09T20:41:00Z | |
dc.date.available | 2020-01-09T20:41:00Z | |
dc.date.issued | 2018 | |
dc.description | Scopus | |
dc.description | MSA Google Scholar | |
dc.description.abstract | The purpose of our investigation was to promote the bioavailability and the brain delivery of rivastigmine tartarate (RV) through optimization of mucoadhesive thermosensitive in situ gel via intranasal (IN) route. The mucoadhesive in situ gels were developed using pluronic F127 (PF127) as thermogelling agent and different mucoadhesive polymers. A full factorial design was implemented to study the influence of three factors; pluronic type at two levels (PF127, PF127/PF68), mucoadhesive polymer type at four levels (HPMC, Chitosan, Carbopol 934 and NaCMC) and mucoadhesive polymer concentration at two levels (0.5 and 1%w/v). The studied responses were sol-gel temperature, consistency, gel strength, adhesion work and T50% of drug release. In vivo pharmacokinetic and biodistribution studies of the selected formula were investigated using radiolabeling approach using normal albino mice. The optimal RV in situ gel (PF127 and 1% Carbopol 934) showed significant transnasal permeation (84%) which was reflected in better distribution to the brain (0.54 %ID/g), when compared to RV IN solution (0.16 %ID/g) and RV IV intravenous solution (0.15 %ID/g). In conclusion, the investigated results showed the potential use of mucoadhesive in situ gel as a promising system for brain targeting of RV via the transnasal delivery system. � 2017 Elsevier B.V. | en_US |
dc.description.uri | https://www.scimagojr.com/journalsearch.php?q=22204&tip=sid&clean=0 | |
dc.identifier.doi | https://doi.org/10.1016/j.jddst.2017.09.021 | |
dc.identifier.doi | PubMed ID : | |
dc.identifier.issn | 17732247 | |
dc.identifier.other | https://doi.org/10.1016/j.jddst.2017.09.021 | |
dc.identifier.other | PubMed ID : | |
dc.identifier.uri | https://t.ly/eppWE | |
dc.language.iso | English | en_US |
dc.publisher | Editions de Sante | en_US |
dc.relation.ispartofseries | Journal of Drug Delivery Science and Technology | |
dc.relation.ispartofseries | 43 | |
dc.subject | Brain targeting | en_US |
dc.subject | Intranasal | en_US |
dc.subject | Pluronic | en_US |
dc.subject | Radiolabeling | en_US |
dc.subject | Rivastigmine | en_US |
dc.subject | Thermosensitive in situ gel | en_US |
dc.subject | carbopol 934 | en_US |
dc.subject | chitosan | en_US |
dc.subject | gelling agent | en_US |
dc.subject | poloxamer | en_US |
dc.subject | rivastigmine | en_US |
dc.subject | albino mouse | en_US |
dc.subject | animal experiment | en_US |
dc.subject | area under the curve | en_US |
dc.subject | Article | en_US |
dc.subject | drug absorption | en_US |
dc.subject | drug bioavailability | en_US |
dc.subject | drug brain level | en_US |
dc.subject | drug delivery system | en_US |
dc.subject | drug release | en_US |
dc.subject | factorial design | en_US |
dc.subject | flow kinetics | en_US |
dc.subject | gelation | en_US |
dc.subject | in vitro study | en_US |
dc.subject | in vivo study | en_US |
dc.subject | isotope labeling | en_US |
dc.subject | maximum plasma concentration | en_US |
dc.subject | mouse | en_US |
dc.subject | mucoadhesion | en_US |
dc.subject | mucoadhesive thermosensitive in situ gel | en_US |
dc.subject | nonhuman | en_US |
dc.subject | pharmacokinetic parameters | en_US |
dc.subject | radiochemistry | en_US |
dc.subject | synthesis | en_US |
dc.subject | time to maximum plasma concentration | en_US |
dc.title | Brain targeted rivastigmine mucoadhesive thermosensitive In situ gel: Optimization, in vitro evaluation, radiolabeling, in vivo pharmacokinetics and biodistribution | en_US |
dc.type | Article | en_US |
dcterms.isReferencedBy | Illum, L., Nasal drug delivery�possibilities, problems and solutions (2003) J. Control. Release, 87 (1-3), pp. 187-198; Majithiya, R.J., Ghosh, P.K., Umrethia, M.L., Murthy, R.S., Thermoreversible-mucoadhesive gel for nasal delivery of sumatriptan (2006) AAPS PharmSciTech, 7 (3), p. 67; Dey, S., Mahanti, B., Mazumder, B., Malgope, A., Dasgupta, S., Nasal drug delivery: an approach of drug delivery through nasal route (2011) Der Pharm. Sin., 2 (3), pp. 94-106; Galgatte, U.C., Kumbhar, A.B., Chaudhari, P.D., Development of in situ gel for nasal delivery: design, optimization, in vitro and in vivo evaluation (2014) Drug Deliv., 21 (1), pp. 62-73; Rao, M., Agrawal, D.K., Shirsath, C., Thermoreversible mucoadhesive in situ nasal gel for treatment of Parkinson's disease (2017) Drug Dev. Ind. Pharm., 43 (1), pp. 142-150; Qian, S., Wong, Y.C., Zuo, Z., Development, characterization and application of in situ gel systems for intranasal delivery of tacrine (2014) Int. J. Pharm., 468 (1-2), pp. 272-282; Bhandwalkar, M.J., Avachat, A.M., Thermoreversible nasal in situ gel of venlafaxine hydrochloride: formulation, characterization, and pharmacodynamic evaluation (2013) AAPS PharmSciTech, 14 (1), pp. 101-110; Williams, B.R., Nazarians, A., Gill, M.A., A review of rivastigmine: a reversible cholinesterase inhibitor (2003) Clin. Ther., 25 (6), pp. 1634-1653; Onor, M.L., Trevisiol, M., Aguglia, E., Rivastigmine in the treatment of Alzheimer's disease: an update (2007) Clin. Interv. Aging, 2 (1), pp. 17-32; Thomas, S., Shandilya, S., Bharati, A., Paul, S.K., Agarwal, A., Mathela, C.S., Identification, characterization and quantification of new impurities by LC-ESI/MS/MS and LC-UV methods in rivastigmine tartrate active pharmaceutical ingredient (2012) J. Pharm. Biomed. Anal., 57, pp. 39-51; Polinsky, R.J., Clinical pharmacology of rivastigmine: a new-generation acetylcholinesterase inhibitor for the treatment of Alzheimer's disease (1998) Clin. Ther., 20 (4), pp. 634-647; Bastiat, G., Plourde, F., Motulsky, A., Furtos, A., Dumont, Y., Quirion, R., Fuhrmann, G., Leroux, J.C., Tyrosine-based rivastigmine-loaded organogels in the treatment of Alzheimer's disease (2010) Biomaterials, 31 (23), pp. 6031-6038; Wilson, B., Samanta, M.K., Santhi, K., Kumar, K.P., Paramakrishnan, N., Suresh, B., Poly(n-butylcyanoacrylate) nanoparticles coated with polysorbate 80 for the targeted delivery of rivastigmine into the brain to treat Alzheimer's disease (2008) Brain Res., 1200, pp. 159-168; Anderson, B.C., Pandit, N.K., Mallapragada, S.K., Understanding drug release from poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) gels (2001) J. Control. Release, 70 (1-2), pp. 157-167; El-Kamel, A.H., In vitro and in vivo evaluation of Pluronic F127-based ocular delivery system for timolol maleate (2002) Int. J. Pharm., 241 (1), pp. 47-55; Merkus, F.W., Verhoef, J.C., Schipper, N.G., Marttin, E., Nasal mucociliary clearance as a factor in nasal drug delivery (1998) Adv. Drug Deliv. Rev., 29 (1-2), pp. 13-38; Choi, H., Lee, M., Kim, M., Kim, C., Effect of additives on the physicochemical properties of liquid suppository bases (1999) Int. J. Pharm., 190 (1), pp. 13-19; Gilbert, J.C., Richardson, J.L., Davies, M.C., Palin, K.J., Hadgraft, J., The effect of solutes and polymers on the gelation properties of pluronic F-127 solutions for controlled drug delivery (1987) J. Control. Release, 5 (2), pp. 113-118; Vadnere, M., Amidon, G., Lindenbaum, S., Haslam, J.L., Thermodynamic studies on the gel-sol transition of some pluronic polyols (1984) Int. J. Pharm., 22 (2-3), pp. 207-218; Tung, I.-C., Rheological behavior of poloxamer 407 aqueous solutions during sol-gel and dehydration processes (1994) Int. J. Pharm., 107 (2), pp. 85-90; Owen, D.H., Peters, J.J., Katz, D.F., Rheological properties of contraceptive gels (2000) Contraception, 62 (6), pp. 321-326; Chang, J.Y., Oh, Y.-K., Choi, H.-G., Kim, Y.B., Kim, C.-K., Rheological evaluation of thermosensitive and mucoadhesive vaginal gels in physiological conditions (2002) Int. J. Pharm., 241 (1), pp. 155-163; Gandra, S.C., Nguyen, S., Nazzal, S., Alayoubi, A., Jung, R., Nesamony, J., Thermoresponsive fluconazole gels for topical delivery: rheological and mechanical properties, in vitro drug release and anti-fungal efficacy (2015) Pharm. Dev. Technol., 20 (1), pp. 41-49; Jones, D.S., Woolfson, A.D., Brown, A.F., Textural, viscoelastic and mucoadhesive properties of pharmaceutical gels composed of cellulose polymers (1997) Int. J. Pharm., 151 (2), pp. 223-233; Jones, D.S., Woolfson, A.D., Brown, A.F., Textural analysis and flow rheometry of novel, bioadhesive antimicrobial oral gels (1997) Pharm. Res., 14 (4), pp. 450-457; Baloglu, E., Karavana, S.Y., Senyigit, Z.A., Hilmioglu-Polat, S., Metin, D.Y., Zekioglu, O., Guneri, T., Jones, D.S., In-situ gel formulations of econazole nitrate: preparation and in-vitro and in-vivo evaluation (2011) J. Pharm. Pharmacol., 63 (10), pp. 1274-1282; Choi, H.-G., Oh, Y.-K., Kim, C.-K., In situ gelling and mucoadhesive liquid suppository containing acetaminophen: enhanced bioavailability (1998) Int. J. Pharm., 165 (1), pp. 23-32; Cheng, Y.-H., Watts, P., Hinchcliffe, M., Hotchkiss, R., Nankervis, R., Faraj, N., Smith, A., Illum, L., Development of a novel nasal nicotine formulation comprising an optimal pulsatile and sustained plasma nicotine profile for smoking cessation (2002) J. Control. Release, 79 (1), pp. 243-254; Callens, C., Ceulemans, J., Ludwig, A., Foreman, P., Remon, J.P., Rheological study on mucoadhesivity of some nasal powder formulations (2003) Eur. J. Pharm. Biopharm., 55 (3), pp. 323-328; Peppas, N.A., Analysis of Fickian and non-Fickian drug release from polymers (1985) Pharm. Acta Helv., 60 (4), pp. 110-111; Pund, S., Rasve, G., Borade, G., Ex vivo permeation characteristics of venlafaxine through sheep nasal mucosa (2013) Eur. J. Pharm. Sci., 48 (1), pp. 195-201; El Zaafarany, G.M., Awad, G.A., Holayel, S.M., Mortada, N.D., Role of edge activators and surface charge in developing ultradeformable vesicles with enhanced skin delivery (2010) Int. J. Pharm., 397 (1-2), pp. 164-172; Sakr, T., El-Safoury, D., Awad, G.A., Motaleb, M., Biodistribution of 99mTc-sunitinib as a potential radiotracer for tumor hypoxia imaging (2013) J. Label. Compd. Radiopharm., 56 (8), pp. 392-395; Sakr, T., Moustapha, M., Motaleb, M., 99mTc-nebivolol as a novel heart imaging radiopharmaceutical for myocardial infarction assessment (2013) J. Radioanal. Nucl. Chem., 295 (2), pp. 1511-1516; Ibrahim, A., Sakr, T., Khoweysa, O., Motaleb, M., El-Bary, A.A., El-Kolaly, M., Formulation and preclinical evaluation of 99mTc�gemcitabine as a novel radiopharmaceutical for solid tumor imaging (2014) J. Radioanal. Nucl. Chem., 302 (1), pp. 179-186; Vyas, T.K., Babbar, A., Sharma, R., Singh, S., Misra, A., Intranasal mucoadhesive microemulsions of clonazepam: preliminary studies on brain targeting (2006) J. Pharm. Sci., 95 (3), pp. 570-580; Bayoumi, N.A., Amin, A.M., Ismail, N.S., Abouzid, K.A., El-Kolaly, M.T., Radioiodination and biological evaluation of Cladribine as potential agent for tumor imaging and therapy (2015) Radiochim. Acta, 103 (11), pp. 777-787; Al-Wabli, R.I., Sakr, T.M.M.H., Khedr, M.A., Selim, A.A., El, M.A.E.-M.A., Zaghary, W.A., Platelet-12 lipoxygenase targeting via a newly synthesized curcumin derivative radiolabeled with technetium-99m (2016) Chem. Central J., 10 (1), p. 73; Essa, B., Sakr, T., Khedr, M.A., El-Essawy, F., El-Mohty, A., 99m Tc-amitrole as a novel selective imaging probe for solid tumor: in silico and preclinical pharmacological study (2015) Eur. J. Pharm. Sci., 76, pp. 102-109; Sakr, T., Motaleb, M., Zaghary, W., Synthesis, radioiodination and in vivo evaluation of ethyl 1, 4-dihydro-7-iodo-4-oxoquinoline-3-carboxylate as a potential pulmonary perfusion scintigraphic radiopharmaceutical (2015) J. Radioanal. Nucl. Chem., 303 (1), pp. 399-406; Babbar, A., Singh, A., Goel, H., Chauhan, U., Sharma, R., Evaluation of 99m Tc-labeled photosan-3, a hematoporphyrin derivative, as a potential radiopharmaceutical for tumor scintigraphy (2000) Nucl. Med. Biol., 27 (4), pp. 419-426; Swidan, M., Sakr, T., Motaleb, M., El-Bary, A.A., El-Kolaly, M., Radioiodinated acebutolol as a new highly selective radiotracer for myocardial perfusion imaging (2014) J. Label. Compd. Radiopharm., 57 (10), pp. 593-599; Sanad, M., Sakr, T., Abdel-Hamid, W.H., Marzook, E., In silico study and biological evaluation of 99mTc-tricabonyl oxiracetam as a selective imaging probe for AMPA receptors J. Radioanal. Nucl. Chem., pp. 1-11; Morsi, N.M., Abdelbary, G.A., Ahmed, M.A., Silver sulfadiazine based cubosome hydrogels for topical treatment of burns: development and in vitro/in vivo characterization (2014) Eur. J. Pharm. Biopharm., 86 (2), pp. 178-189; Boche, M., Pokharkar, V., Quetiapine nanoemulsion for intranasal drug delivery: evaluation of brain-targeting efficiency (2017) AAPS PharmSciTech, 18 (3), pp. 686-696; Mygind, N., Dahl, R., Anatomy, physiology and function of the nasal cavities in health and disease (1998) Adv. Drug Deliv. Rev., 29 (1), pp. 3-12; Tuomela, A., Hirvonen, J., Peltonen, L., Stabilizing agents for drug nanocrystals: effect on bioavailability (2016) Pharmaceutics, 8 (2); Kim, E.Y., Gao, Z.G., Park, J.S., Li, H., Han, K., rhEGF/HP-beta-CD complex in poloxamer gel for ophthalmic delivery (2002) Int. J. Pharm., 233 (1-2), pp. 159-167; Qi, H., Li, L., Huang, C., Li, W., Wu, C., Optimization and physicochemical characterization of thermosensitive poloxamer gel containing puerarin for ophthalmic use (2006) Chem. Pharm. Bull. (Tokyo), 54 (11), pp. 1500-1507; Kolsure, P.K., Rajkapoor, B., Development of zolmitriptan gel for nasal administration (2012) Asian J. Pharm. Clin. Res., 5, pp. 88-94; Ben Henda, M., Ghaouar, N., Gharbi, A., Rheological properties and reverse micelles conditions of PEO-PPO-PEO Pluronic F68: effects of temperature and solvent mixtures (2013) J. Polym., 2013; Pereira, G.G., Dimer, F.A., Guterres, S.S., Kechinski, C.P., Granada, J.E., Cardozo, N.S.M., Formulation and characterization of poloxamer 407�: thermoreversible gel containing polymeric microparticles and hyaluronic acid (2013) Qu�m. Nova, 36 (8), pp. 1121-1125; Baloglu, E., Karavana, S.Y., Senyigit, Z.A., Guneri, T., Rheological and mechanical properties of poloxamer mixtures as a mucoadhesive gel base (2011) Pharm. Dev. Technol., 16 (6), pp. 627-636; Bonacucina, G., Cespi, M., Misici-Falzi, M., Palmieri, G.F., Rheological, adhesive and release characterisation of semisolid Carbopol/tetraglycol systems (2006) Int. J. Pharm., 307 (2), pp. 129-140; Yong, C.S., Choi, J.S., Quan, Q.-Z., Rhee, J.-D., Kim, C.-K., Lim, S.-J., Kim, K.-M., Choi, H.-G., Effect of sodium chloride on the gelation temperature, gel strength and bioadhesive force of poloxamer gels containing diclofenac sodium (2001) Int. J. Pharm., 226 (1), pp. 195-205; Desai, S.D., Blanchard, J., In vitro evaluation of pluronic F127-based controlled-release ocular delivery systems for pilocarpine (1998) J. Pharm. Sci., 87 (2), pp. 226-230; Li, H., Hardy, R.J., Gu, X., Effect of drug solubility on polymer hydration and drug dissolution from polyethylene oxide (PEO) matrix tablets (2008) AAPS PharmSciTech, 9 (2), pp. 437-443; Phaechamud, T., Darunkaisorn, W., Drug release behavior of polymeric matrix filled in capsule (2016) Saudi Pharm. J., 24 (6), pp. 627-634; Agarwal, S., Murthy, R., Effect of different polymer concentration on drug release rate and physicochemical properties of mucoadhesive gastroretentive tablets (2015) Indian J. Pharm. Sci., 77 (6), p. 705; Guojie, X., Sunada, H., Influence of formulation change on drug release kinetics from hydroxypropylmethylcellulose matrix tablets (1995) Chem. Pharm. Bull., 43 (3), pp. 483-487; Ryu, J.M., Chung, S.J., Lee, M.H., Kim, C.K., Shim, C., Increased bioavailability of propranolol in rats by retaining thermally gelling liquid suppositories in the rectum (1999) J. Control. Release, 59 (2), pp. 163-172; Abouhussein, D.M.N., Abd El-Bary, A., Shalaby, S.H., Elnabarawi, M.A., Chitosan mucoadhesive buccal films: effect of different casting solvents on their physicochemical properties (2016) Int. J. Pharm. Pharm. Sci., 8 (9), pp. 206-213; Merkus, F., Schipper, N., Hermens, W., Romeijn, S., Verhoef, J., Absorption enhancers in nasal drug delivery: efficacy and safety (1993) J. Control. Release, 24 (1-3), pp. 201-208; Marttin, E., Verhoef, J.C., Romeijn, S.G., Merkus, F.W., Effects of absorption enhancers on rat nasal epithelium in vivo: release of marker compounds in the nasal cavity (1995) Pharm. Res., 12 (8), pp. 1151-1157; Tas, C., Ozkan, C.K., Savaser, A., Ozkan, Y., Tasdemir, U., Altunay, H., Nasal absorption of metoclopramide from different Carbopol� 981 based formulations: in vitro, ex vivo and in vivo evaluation (2006) Eur. J. Pharm. Biopharm., 64 (2), pp. 246-254; Zaki, N.M., Awad, G.A., Mortada, N.D., ElHady, S.S.A., Enhanced bioavailability of metoclopramide HCl by intranasal administration of a mucoadhesive in situ gel with modulated rheological and mucociliary transport properties (2007) Eur. J. Pharm. Sci., 32 (4), pp. 296-307; Alam, M.I., Baboota, S., Ahuja, A., Ali, M., Ali, J., Sahni, J.K., Bhatnagar, A., Pharmacoscintigraphic evaluation of potential of lipid nanocarriers for nose-to-brain delivery of antidepressant drug (2014) Int. J. Pharm., 470 (1-2), pp. 99-106; Banerjee, T., Singh, A.K., Sharma, R.K., Maitra, A.N., Labeling efficiency and biodistribution of Technetium-99m labeled nanoparticles: interference by colloidal tin oxide particles (2005) Int. J. Pharm., 289 (1-2), pp. 189-195; Wilson, B., Samanta, M.K., Santhi, K., Kumar, K.P.S., Paramakrishnan, N., Suresh, B., Poly (n-butylcyanoacrylate) nanoparticles coated with polysorbate 80 for the targeted delivery of rivastigmine into the brain to treat Alzheimer's disease (2008) Brain Res., 1200, pp. 159-168; Khan, S., Patil, K., Bobade, N., Yeole, P., Gaikwad, R., Formulation of intranasal mucoadhesive temperature-mediated in situ gel containing ropinirole and evaluation of brain targeting efficiency in rats (2010) J. Drug Target., 18 (3), pp. 223-234 | |
dcterms.source | Scopus |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- avatar_scholar_128.png
- Size:
- 2.73 KB
- Format:
- Portable Network Graphics
- Description: