Antimicrobial activity of hybrids terpolymers based on magnetite hydrogel nanocomposites

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorFarag R.K.
dc.contributor.authorLabena A.
dc.contributor.authorFakhry S.H.
dc.contributor.authorSafwat G.
dc.contributor.authorDiab A.
dc.contributor.authorAtta A.M.
dc.contributor.otherPetroleum Application Department
dc.contributor.otherEgyptian Petroleum Research Institute (EPRI)
dc.contributor.otherNasr City
dc.contributor.otherCairo
dc.contributor.other11727
dc.contributor.otherEgypt; Faculty of Biotechnology
dc.contributor.otherOctober University for Modern Science and Arts
dc.contributor.other26 July Mehwar Road intersection with Wahat Road
dc.contributor.other6th October City P.O. Box 2511
dc.contributor.otherEgypt; Chemistry Department
dc.contributor.otherCollege of Science
dc.contributor.otherKing Saud University
dc.contributor.otherP.O. Box 2455
dc.contributor.otherRiyadh
dc.contributor.other11451
dc.contributor.otherSaudi Arabia
dc.date.accessioned2020-01-09T20:40:31Z
dc.date.available2020-01-09T20:40:31Z
dc.date.issued2019
dc.descriptionScopus
dc.descriptionGoogle Scholar
dc.description.abstractIn the past few years, the development of hydrogel properties has led to the emergence of nanocomposite hydrogels that have unique properties that allow them to be used in various different fields and applications such as drug delivery, adsorption soil containing, tissue engineering, wound dressing, and especially antimicrobial applications. Thus, this study was conducted in order to fabricate a novel crosslinked terpolymer nanocomposite hydrogel using the free radical copolymerization method based on the usage of 2-acrylamido-2-methylpropane sulfonic acid (AMPS), acrylamide (AAm), acrylonitrile (AN), and acrylic acid (AA) monomers and iron oxide (Fe3O4) magnetic nanoparticles and using benzoyl peroxide as an initiator and ethylene glycol dimethacrylate (EGDMA) as a crosslinker. The structure of the synthesized composite was confirmed using Fourier transform infrared (FTIR) spectroscopy and x-ray powder diffraction (XRD) measurements. Furthermore, the surface morphology and the magnetic nanoparticle distributions were determined by scanning electron microscopy (SEM) measurement. In addition, the swelling capacity of the hydrogel nanocomposite was measured using the swelling test. Lastly, the efficiency of the produced composite was evaluated as an antimicrobial agent for Gram-positive and Gram-negative bacterial strains and a fungal strain. � 2019 by the authors.en_US
dc.identifier.doihttps://doi.org/10.3390/ma12213604
dc.identifier.doiPubMedID
dc.identifier.issn19961944
dc.identifier.otherhttps://doi.org/10.3390/ma12213604
dc.identifier.otherPubMedID
dc.identifier.urihttps://t.ly/AXXyX
dc.language.isoEnglishen_US
dc.publisherMDPI AGen_US
dc.relation.ispartofseriesMaterials
dc.relation.ispartofseries12
dc.subjectAntibacterialen_US
dc.subjectAntifungalen_US
dc.subjectIron oxide nanocompositeen_US
dc.subjectNanocomposite hydrogelsen_US
dc.subjectSwellingen_US
dc.subjectAcrylic monomersen_US
dc.subjectAmidesen_US
dc.subjectAntimicrobial agentsen_US
dc.subjectBenzoyl peroxideen_US
dc.subjectDrug deliveryen_US
dc.subjectEthyleneen_US
dc.subjectEthylene glycolen_US
dc.subjectFourier transform infrared spectroscopyen_US
dc.subjectFree radicalsen_US
dc.subjectIron oxidesen_US
dc.subjectMagnetiteen_US
dc.subjectMicroorganismsen_US
dc.subjectMorphologyen_US
dc.subjectNanocompositesen_US
dc.subjectNanomagneticsen_US
dc.subjectNanoparticlesen_US
dc.subjectScanning electron microscopyen_US
dc.subjectSoil testingen_US
dc.subjectSurface morphologyen_US
dc.subjectSwellingen_US
dc.subjectTerpolymersen_US
dc.subjectTissue engineeringen_US
dc.subjectX ray powder diffractionen_US
dc.subject2-acrylamido-2-methylpropane sulfonic acidsen_US
dc.subjectAnti-fungalen_US
dc.subjectAntibacterialen_US
dc.subjectEthylene glycol dimethacrylateen_US
dc.subjectFree radical copolymerizationen_US
dc.subjectMagnetic nano-particlesen_US
dc.subjectNanocomposite hydrogelsen_US
dc.subjectTerpolymer nanocompositesen_US
dc.subjectHydrogelsen_US
dc.titleAntimicrobial activity of hybrids terpolymers based on magnetite hydrogel nanocompositesen_US
dc.typeArticleen_US
dcterms.isReferencedByWei, L., Hu, N., Zhang, Y., Synthesis of polymer-Mesoporous silica nanocomposites (2010) Materials, 3, pp. 4066-4079; Datta, K., Achari, A., Eswaramoorthy, M., Aminoclay: A functional layered material with multifaceted applications (2013) J. Mater. Chem. A, 1, pp. 6707-6718; Janas, D., Boncel, S., Koziol, K.K., Electrothermal halogenation of carbon nanotube films (2014) Carbon, 73, pp. 259-266; Gaharwar, A.K., Peppas, N.A., Khademhosseini, A., Nanocomposite hydrogels for biomedical applications (2014) Biotechnol. Bioeng, 111, pp. 441-453; Sharma, G., Thakur, B., Naushad, M., Kumar, A., Stadler, F.J., Alfadul, S.M., Mola, G.T., Applications of nanocomposite hydrogels for biomedical engineering and environmental protection (2018) Environ. Chem. Lett, 16, pp. 113-146; Song, F., Li, X., Wang, Q., Liao, L., Zhang, C., Nanocomposite hydrogels and their applications in drug delivery and tissue engineering (2015) J. Biomed. Nanotechnol, 11, pp. 40-52; Shin, M.K., Spinks, G.M., Shin, S.R., Kim, S.I., Kim, S.J., Nanocomposite hydrogel with high toughness for bioactuators (2009) Adv. Mater, 21, pp. 1712-1715; Adhikari, B., Biswas, A., Banerjee, A., Graphene oxide-based hydrogels to make metal nanoparticle-containing reduced graphene oxide-based functional hybrid hydrogels (2012) ACS Appl. Mater. Interfaces, 4, pp. 5472-5482; Goenka, S., Sant, V., Sant, S., Graphene-based nanomaterials for drug delivery and tissue engineering (2014) J. Control. Release, 173, pp. 75-88; Tiwari, A., Grailer, J.J., Pilla, S., Steeber, D.A., Gong, S., Biodegradable hydrogels based on novel photopolymerizable guar gum-methacrylate macromonomers for in situ fabrication of tissue engineering scaffolds (2009) Acta Biomater, 5, pp. 3441-3452; Madhumathi, K., Kumar, P.S., Abhilash, S., Sreeja, V., Tamura, H., Manzoor, K., Nair, S., Jayakumar, R., Development of novel chitin/nanosilver composite scaffolds for wound dressing applications (2010) J. Mater. Sci. Mater. Med, 21, pp. 807-813; Eid, M., El-Arnaouty, M., Salah, M., Soliman, E.-S., Hegazy, E.-S.A., Radiation synthesis and characterization of poly (vinyl alcohol)/poly (N-vinyl-2-pyrrolidone) based hydrogels containing silver nanoparticles (2012) J. Polym. Res, 19, p. 9835; Varaprasad, K., Raghavendra, G.M., Jayaramudu, T., Yallapu, M.M., Sadiku, R., A mini review on hydrogels classification and recent developments in miscellaneous applications (2017) Mater. Sci. Eng. C, 79, pp. 958-971; Mohan, Y.M., Lee, K., Premkumar, T., Geckeler, K.E., Hydrogel networks as nanoreactors: A novel approach to silver nanoparticles for antibacterial applications (2007) Polymer, 48, pp. 158-164; Tomar, A., Garg, G., Short review on application of gold nanoparticles (2013) Glob. J. Pharmacol, 7, pp. 34-38; Campbell, J.L., Arora, J., Cowell, S.F., Quasi-cubic magnetite/silica core-shell nanoparticles as enhanced Mri contrast agents for cancer imaging (2011) PLoS ONE, 6; Eyvazzadeh, N., Shakeri-Zadeh, A., Fekrazad, R., Gold-coated magnetic nanoparticle as a nanotheranostic agent for magnetic resonance imaging and photothermal therapy of cancer (2017) Lasers Med. Sci, 32, pp. 1469-1477; Pang, Y., Wang, C., Wang, J., Fe3o4@Ag magnetic nanoparticles for microRNA capture and duplex-specific nuclease signal amplification based SERS detection in cancer cells (2016) Biosens. Bioelectron, 79, pp. 574-580; Heidaria, F., Bahrololooma, M.E., Vashaeeb, D., Tayebicd, T., In situ preparation of iron oxide nanoparticles in naturalhydroxyapatite/chitosan matrix for bone tissue engineering application (2015) Ceram. Int, 41, pp. 3094-3100; Iconaru, S.L., Prodan, A.M., Coustumer, P.L., Predoi, D., Synthesis and antibacterial and antibiofilm activity of iron oxide glycerol nanoparticles obtained by coprecipitation method (2013) J. Chem, 2013; Behera, S.S., Patra, J.K., Pramanik, K., Panda, N., Thatoi, H., Characterization and evaluation of antibacterial activities of chemically synthesized iron oxide nanoparticles (2012) World J. Nano Sci. Eng, 2, pp. 196-200; Harifi, T., Montazer, M., In situ synthesis of iron oxide nanoparticles on polyester fabric utilizing color, magnetic, antibacterial and sono-Fenton catalytic properties (2014) J. Mater. Chem. B, 2, pp. 272-282; Konwar, A., Kalita, S., Kotoky, J., Chowdhury, D., Chitosan-iron oxide coated graphene oxide nanocomposite hydrogel: A robust and soft antimicrobial biofilm (2016) ACS Appl. Mater. Interfaces, 832, pp. 20625-20634; Akl, Z.F., El-Saeed, S.M., Atta, A.M., In-situ synthesis of magnetite acrylamide amino-amidoxime nanocomposite adsorbent for highly efficient sorption of U (VI) ions (2016) J. Ind. Eng. Chem, 34, pp. 105-116; Atta, A.M., Gafer, A.K., Al-Lohedan, H.A., Abdullah, M.M.S., Ezzat, A.O., Preparation of magnetite and silver poly(2-acrylamido-2-methyl propane sulfonic acid-co-acrylamide) nanocomposites for adsorption and catalytic degradation of methylene blue water pollutant (2019) Polym. Int, 68, pp. 1146-1177; Al-Hussain, S.A., Ezzat, A.O., Gaffer, A.K., Atta, A.M., Removal of organic water pollutant using magnetite nanomaterials embedded with ionic copolymers of 2-acrylamido-2-methylpropane sodium sulfonate cryogels (2018) Polym. Int, 67, pp. 166-177; Bal, A., �epni, F., �akir, �., Acar, I., G��l�, G., Synthesis and characterization of copolymeric and terpolymeric hydrogel-silver nanocomposites based on acrylic acid, acrylamide and itaconic acid: Investigation of their antibacterial activity against gram-negative bacteria (2015) Braz. J. Chem. Eng, 32, pp. 509-518; Qavi, S., Pourmahdian, S., Eslami, H., Acrylamide hydrogels preparation via free radical crosslinking copolymerization: Kinetic study and morphological investigation (2014) J. Macromol. Sci. Part A, 51, pp. 842-848; Balouiri, M., Sadiki, M., Ibnsouda, S.K., Methods for in vitro evaluating antimicrobial activity: A review (2016) J. Pharm. Anal, 6, pp. 71-79; Labena, A., Kabel, K., Farag, R., One-pot synthesize of dendritic hyperbranched PAMAM and assessment as a broad spectrum antimicrobial agent and anti-biofilm (2016) Mater. Sci. Eng. C, 58, pp. 1150-1159; Wiegand, I., Hilpert, K., Hancock, R.E., Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances (2008) Nat. Protoc, 3, p. 163; Modrow, S., Falke, D., Truyen, U., Sch�tzl, H., (2013) Molecular Virology, , Springer: Berlin/Heidelberg, Germany; Amsterdam, D., Susceptibility testing of antimicrobials in liquid media (1996) Antibiot. Lab. Med, 4, pp. 61-143; Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically (2006) Approv. Stand, 26, pp. 14-16; Rukayadi, Y., Han, S., Yong, D., Hwang, J.-K., In vitro antibacterial activity of panduratinAagainst enterococci clinical isolates (2010) Biol. Pharm. Bull, 33, pp. 1489-1493; Kebbekus, B.B., (1997) Introduction to Organic Spectroscopy, , Harwood, L.M., Claridge, T.D.W., Eds.; Oxford University Press: Oxford, UK; Kim, H.C., Gao, X., Jayaramudu, T., Kang, J., Kim, J., Optical and electro-active properties of polyacrylamide/CNC composite hydrogels (2017) Mater. Sci, 34, pp. 575-580; Nakamura, T., Tamura, A., Murotani, H., Oishi, M., Jinji, Y., Matsuishi, K., Nagasaki, Y., Large payloads of gold nanoparticles into the polyamine network core of stimuli-responsive PEGylated nanogels for selective and noninvasive cancer photothermal therapy (2010) Nanoscale, 2, pp. 739-746; Bajai, P., Paliwal, D.K., Gupta, A.K., Acrylonitrile-acrylic acids copolymers (1993) 1. synthesis and characterization. J. Appl. Polym. Sci, 49, pp. 823-833; Chapiro, A., Influence of solvents on apparent reactivity ratios in the free radical copolymerization of polar monomers (1989) Eur. Polym. J, 25, pp. 713-717; Farag, R., Mohamed, R., Synthesis and characterization of carboxymethyl chitosan nanogels for swelling studies and antimicrobial activity (2012) Molecules, 18, pp. 190-203; Kenawy, E.-R., Worley, S., Broughton, R., The chemistry and applications of antimicrobial polymers: A state-of-the-art review (2007) Biomacromolecules, 8, pp. 1359-1384; Gratzl, G., Paulik, C., Hild, S., Guggenbichler, J.P., Lackner, M., Antimicrobial activity of poly (acrylic acid) block copolymers (2014) Mater. Sci. Eng. C, 38, pp. 94-100; Krulwich, T.A., Sachs, G., Padan, E., Molecular aspects of bacterial pH sensing and homeostasis (2011) Nat. Rev. Microbiol, 9, p. 330; Zollfrank, C., Gutbrod, K., Wechsler, P., Guggenbichler, J.P., Antimicrobial activity of transition metal acid MoO3 prevents microbial growth on material surfaces (2012) Mater. Sci. Eng. C, 32, pp. 47-54; Foster, J.W., Escherichia coli acid resistance: Tales of an amateur acidophile (2004) Nat. Rev. Microbiol, 2, p. 898; Goddard, J.M., Hotchkiss, J., Polymer surface modification for the attachment of bioactive compounds (2007) Prog. Polym. Sci, 32, pp. 698-725; Matche, R., Kulkarni, G., Raj, B., Modification of ethylene acrylic acid film for antimicrobial activity (2006) J. Appl. Polym. Sci, 100, pp. 3063-3068; Bassol�, I.H.N., Juliani, H.R., Essential oils in combination and their antimicrobial properties (2012) Molecules, 17, pp. 3989-4006; Lang, G., Buchbauer, G., A review on recent research results (2008-2010) on essential oils as antimicrobials and antifungals. A review (2012) Flavour Fragr. J, 27, pp. 13-39; Edris, A.E., Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: A review (2007) Phytother. Res, 21, pp. 308-323; Iemma, F., Puoci, F., Curcio, M., Parisi, O.I., Cirillo, G., Spizzirri, U.G., Picci, N., Ferulic acid as a comonomer in the synthesis of a novel polymeric chain with biological properties (2010) J. Appl. Polym. Sci, 115, pp. 784-789
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
avatar_scholar_128.png
Size:
2.73 KB
Format:
Portable Network Graphics
Description:
Loading...
Thumbnail Image
Name:
materials-12-03604.pdf
Size:
2.08 MB
Format:
Adobe Portable Document Format
Description: