Hepatoprotective activity of Erythrina neillii leaf extract and characterization of its phytoconstituents
dc.Affiliation | October University for modern sciences and Arts (MSA) | |
dc.contributor.author | Bakr R.O. | |
dc.contributor.author | Fayed M.A.A. | |
dc.contributor.author | Fayez A.M. | |
dc.contributor.author | Gabr S.K. | |
dc.contributor.author | El-Fishawy A.M. | |
dc.contributor.author | Taha S.El-Alfy | |
dc.contributor.other | Department of Pharmacognosy | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | October University for Modern Sciences and Arts | |
dc.contributor.other | Giza | |
dc.contributor.other | 11787 | |
dc.contributor.other | Egypt; Department of Pharmacognosy | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | El-Sadat City University | |
dc.contributor.other | Egypt; Department of Pharmacology | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | October University for Modern Sciences and Arts | |
dc.contributor.other | Giza | |
dc.contributor.other | 11787 | |
dc.contributor.other | Egypt; Department of Pharmacognosy | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | Cairo University | |
dc.contributor.other | Cairo | |
dc.contributor.other | 11562 | |
dc.contributor.other | Egypt | |
dc.date.accessioned | 2020-01-09T20:40:41Z | |
dc.date.available | 2020-01-09T20:40:41Z | |
dc.date.issued | 2019 | |
dc.description | Scopus | |
dc.description.abstract | Background: Natural antioxidants and anti-inflammatory agents have the ability to restore normal balance to destructed liver cells. The genus Erythrina has attracted attention for its broad spectrum of physiological activities and its rich polyphenolic and alkaloid contents. Hypothesis/Purpose: The major phytoconstituents of Erythrina neillii, an ornamental coral tree and a hybrid between E. herbacea and E. humeana that was not previously studied, were investigated. The hepatoprotective effect and underlying mechanisms were also assessed. Study design and methods: The main phytoconstituents in the different fractions of the alcoholic leaf extract (dichloromethane and ethyl acetate) were identified using high resolution high-performance liquid chromatography coupled with mass spectrometry (HR-HPLC-MS-MS) based on the fragmentation pattern and molecular formula of the identified compounds and on previous literature. In addition, the hepatoprotective, anti-inflammatory and antioxidant activities of three doses of E. neillii alcoholic leaf extract (100, 250, 500 mg/kg) were investigated in methotrexate (MTX)-intoxicated rats and were compared with those of silymarin-treated rats. Liver function parameters were obtained, and a histopathological study was performed. In addition, the anti-inflammatory mediators and the antioxidant system in the liver tissues were assessed. Results: The dichloromethane extract revealed an abundance of alkaloids (25), in addition to tentatively identifying flavone (1), flavanone (1) and three fatty acids. Additionally, thirty-six compounds belonging to different classes of phytoconstituents with a predominance of flavonoids (21), O/C-flavone and flavonol glycosides, followed by alkaloids (9), fatty acids (4) and (2), and phenolic glycoside were identified in the ethyl acetate extract. Compared with MTX, alcoholic leaf extract (500 mg/kg) ameliorated the MTX-induced alterations by improving several biochemical marker levels, fighting oxidative stress in serum and liver tissues, and decreasing inflammatory mediators; this finding was further confirmed by the histopathological study. Conclusion: This study reveals E. neillii, a rich source of flavonoids and alkaloids, which could be further exploited to provide a promising and safe antihepatotoxic agent source. 2018 Elsevier GmbH | en_US |
dc.description.uri | https://www.scimagojr.com/journalsearch.php?q=17067&tip=sid&clean=0 | |
dc.identifier.doi | https://doi.org/10.1016/j.phymed.2018.09.231 | |
dc.identifier.doi | PubMed ID 30668417 | |
dc.identifier.issn | 9447113 | |
dc.identifier.other | https://doi.org/10.1016/j.phymed.2018.09.231 | |
dc.identifier.other | PubMed ID 30668417 | |
dc.identifier.uri | https://t.ly/2d3l5 | |
dc.language.iso | English | en_US |
dc.publisher | Elsevier GmbH | en_US |
dc.relation.ispartofseries | Phytomedicine | |
dc.relation.ispartofseries | 53 | |
dc.subject | Alkaloids | en_US |
dc.subject | Antihepatotoxic | en_US |
dc.subject | Erythrina, neillii | en_US |
dc.subject | Flavonoids | en_US |
dc.subject | alkaline phosphatase | en_US |
dc.subject | alkaloid derivative | en_US |
dc.subject | apigenin | en_US |
dc.subject | aspartate aminotransferase | en_US |
dc.subject | dextro amino acid aminotransferase | en_US |
dc.subject | Erythrina extract | en_US |
dc.subject | Erythrina neillii extract | en_US |
dc.subject | fatty acid | en_US |
dc.subject | flavanone | en_US |
dc.subject | flavone | en_US |
dc.subject | glutathione | en_US |
dc.subject | liver protective agent | en_US |
dc.subject | silymarin | en_US |
dc.subject | unclassified drug | en_US |
dc.subject | antioxidant | en_US |
dc.subject | flavonoid | en_US |
dc.subject | glycoside | en_US |
dc.subject | methotrexate | en_US |
dc.subject | nonsteroid antiinflammatory agent | en_US |
dc.subject | plant extract | en_US |
dc.subject | protective agent | en_US |
dc.subject | acute toxicity | en_US |
dc.subject | adult | en_US |
dc.subject | animal experiment | en_US |
dc.subject | animal model | en_US |
dc.subject | antiinflammatory activity | en_US |
dc.subject | antioxidant activity | en_US |
dc.subject | Article | en_US |
dc.subject | controlled study | en_US |
dc.subject | coral | en_US |
dc.subject | Erythrina | en_US |
dc.subject | high performance liquid chromatography | en_US |
dc.subject | histopathology | en_US |
dc.subject | human | en_US |
dc.subject | liver cell | en_US |
dc.subject | liver function | en_US |
dc.subject | liver protection | en_US |
dc.subject | liver tissue | en_US |
dc.subject | liver toxicity | en_US |
dc.subject | male | en_US |
dc.subject | nonhuman | en_US |
dc.subject | phytochemistry | en_US |
dc.subject | plant leaf | en_US |
dc.subject | priority journal | en_US |
dc.subject | rat | en_US |
dc.subject | animal | en_US |
dc.subject | chemistry | en_US |
dc.subject | drug effect | en_US |
dc.subject | Erythrina | en_US |
dc.subject | liver | en_US |
dc.subject | metabolism | en_US |
dc.subject | oxidative stress | en_US |
dc.subject | pathology | en_US |
dc.subject | plant leaf | en_US |
dc.subject | tandem mass spectrometry | en_US |
dc.subject | toxic hepatitis | en_US |
dc.subject | Wistar rat | en_US |
dc.subject | Animals | en_US |
dc.subject | Anti-Inflammatory Agents, Non-Steroidal | en_US |
dc.subject | Antioxidants | en_US |
dc.subject | Chemical and Drug Induced Liver Injury | en_US |
dc.subject | Chromatography, High Pressure Liquid | en_US |
dc.subject | Erythrina | en_US |
dc.subject | Flavonoids | en_US |
dc.subject | Glycosides | en_US |
dc.subject | Liver | en_US |
dc.subject | Male | en_US |
dc.subject | Methotrexate | en_US |
dc.subject | Oxidative Stress | en_US |
dc.subject | Plant Extracts | en_US |
dc.subject | Plant Leaves | en_US |
dc.subject | Protective Agents | en_US |
dc.subject | Rats, Wistar | en_US |
dc.subject | Tandem Mass Spectrometry | en_US |
dc.title | Hepatoprotective activity of Erythrina neillii leaf extract and characterization of its phytoconstituents | en_US |
dc.type | Article | en_US |
dcterms.isReferencedBy | Amer, M.E., Shamma, M., Freyer, A.J., The tetracyclic Erythrina alkaloids (1991) J. Nat. Prod., 54, pp. 329-363. , https://doi.org/10.1021/np50074a001; Anupama, V., Narmadha, R., Gopalakrishnan, V.K., Devaki, K., Enzymatic alteration in the vital organs of streptozotocin diabetic rats treated with aqueous extract of Erythrina Variegata bark (2012) Int. J. Pharm. Pharm. Sci., 4, pp. 134-147; Becchi, M., Fraisse, D., Fast atom bombardment and fast atom bombardment collision-activated dissociation/mass analysed ion kinetic energy analysis of C-glycosidic flavonoids (1989) Biomed. Environ. Mass Spectrom., 18, pp. 122-130. , https://doi.org/10.1002/bms.1200180207; Beutler, E., Duron, O., Kelly, B.M., Improved method for the determination of blood glutathione (1963) J. Lab. Clin. Med., 61, pp. 882-888; Bott, R., Bancroft's theory and practice of histological techinques (2014) IGARSS 2014, , https://doi.org/10.1007/s13398-014-0173-7.2; Chawla, A.S., Kapoor, V.K., Erythrina Alkaloids (1995) Alkaloids Chem. Biol. Perspect., 9, pp. 85-153. , https://doi.org/10.1016/B978-0-08-042089-9.50010-3; Cui, L., Thuong, P.T., Fomum, Z.T., Oh, W.K., A new erythrinan alkaloid from the seed of Erythrina addisoniae (2009) Arch. Pharm. Res., 32, pp. 325-328. , https://doi.org/10.1007/s12272-009-1302-2; De, S., Sen, T., Chatterjee, M., Reduction of oxidative stress by an ethanolic extract of leaves of Piper betle (Paan) Linn. decreased methotrexate-induced toxicity (2015) Mol. Cell. Biochem., 409, pp. 191-197. , https://doi.org/10.1007/s11010-015-2524-x; Donfack, J.H., Njayou, F.N., Rodrigue, T.K., Chuisseu, D.D.P., Tchana, N.A., Vita Finzi, P., Tchouanguep, M.F., Moundipa, P.F., Study of a hepatoprotective and antioxidant fraction from Erythrina senegalensis stem bark extract: in vitro and in vivo (2008) Pharmacologyonline, 1, pp. 120-130; Dyke, S.F., Quessy, S.N., Erythrina and related alkaloids (1981) Alkaloids Chem. Physiol., 18, pp. 1-98. , https://doi.org/10.1016/S1876-0813(08)60236-5; Ercisli, S., Orhan, E., Chemical composition of white (Morus alba), red (Morus rubra) and black (Morus nigra) mulberry fruits (2007) Food Chem., 103, pp. 1380-1384. , https://doi.org/10.1016/j.foodchem.2006.10.054; Farag, M.A., Mekky, H., El-Masry, S., Metabolomics driven analysis of Erythrina lysistemon cell suspension culture in response to methyl jasmonate elicitation (2016) J. Adv. Res., 7, pp. 681-689. , https://doi.org/10.1016/j.jare.2016.07.002; Farag, M.A., Rasheed, D.M., Kropf, M., Heiss, A.G., Metabolite profiling in Trigonella seeds via UPLC-MS and GC-MS analyzed using multivariate data analyses (2016) Anal. Bioanal. Chem., 408, pp. 8065-8078. , https://doi.org/10.1007/s00216-016-9910-4; Ferreres, F., Silva, B.M., Andrade, P.B., Seabra, R.M., Ferreira, M.A., Approach to the study of C-glycosyl flavones by ion trap HPLC-PAD-ESI/MS/MS: application to seeds of quince (Cydonia oblonga) (2003) Phytochem. Anal., 14, pp. 352-359. , https://doi.org/10.1002/pca.727; Gabr, S.K., Bakr, R.O., Elshishtawy, H.M., El-Fishawy, A.M., El-Alfy, T.S., Botanical and genetic characters of Erythrina�neillii cultivated in Egypt (2017) Rev. Bras. Farmacogn., 27, pp. 273-281. , https://doi.org/https://doi.org/10.1016/j.bjp.2017.02.005; Garca-Mateos, R., Soto-Hernndez, M., Vibrans, H., Erythrina americana miller (Colorn; Fabaceae), a versatile resource from Mexico: a review (2001) Econ. Bot., , https://doi.org/10.1007/BF02866562; Garin-Aguilar, M.E., del Toro, G.V., Soto-Hernndez, M., Kite, G., High-performance liquid chromatography-mass spectrometric analysis of alkaloids extracted from seeds of Erythrina herbacea (2005) Phytochem. Anal., 16, pp. 302-306. , https://doi.org/10.1002/pca.821; Grisham, M.B., MacDermott, R.P., Deitch, E.A., Oxidant defense mechanisms in the human colon (1990) Inflammation, 14, pp. 669-680; Hassaan, Y., Handoussa, H., El-Khatib, A.H., Linscheid, M.W., El Sayed, N., Ayoub, N., Evaluation of plant phenolic metabolites as a source of Alzheimer's drug leads (2014) Biomed Res. Int., 2014. , https://doi.org/10.1155/2014/843263; Hussain, M.M., Tuhin, M.T.H., Akter, F., Rashid, M.A., Constituents of Erythrina - a potential source of secondary metabolities: a review (2016) Bangladesh Pharm. J., 19, p. 237. , https://doi.org/10.3329/bpj.v19i2.29287; Juma, B.F., Majinda, R.R.T., Erythrinaline alkaloids from the flowers and pods of Erythrina lysistemon and their DPPH radical scavenging properties (2004) Phytochemistry, 65, pp. 1397-1404. , https://doi.org/10.1016/j.phytochem.2004.04.029; Kose, E., Sapmaz, H.I., Sarihan, E., Vardi, N., Turkoz, Y., Ekinci, N., Beneficial effects of montelukast against methotrexate-induced liver toxicity: a biochemical and histological study (2012) Sci. World J., 2012, pp. 1-6. , https://doi.org/10.1100/2012/987508; Majinda, R.R.T., Wanjala, C.C.W., Juma, B.F., Bioactive non-alkaloidal constituents from the genus Erythrina (2005) Stud. Nat. Prod. Chem., 32, pp. 821-853. , https://doi.org/10.1016/S1572-5995(05)80070-5; Mohammed, M.M.D., Ibrahim, N.A., Awad, N.E., Matloub, A.A., Mohamed-Ali, A.G., Barakat, E.E., Mohamed, A.E., Colla, P.L., Anti-HIV-1 and cytotoxicity of the alkaloids of Erythrina abyssinica Lam. growing in Sudan (2012) Nat. Prod. Res., 26, pp. 1565-1575. , https://doi.org/10.1080/14786419.2011.573791; Mujahid, M., Hussain, T., Siddiqui, H.H., Hussain, A., Evaluation of hepatoprotective potential of Erythrina indica leaves against antitubercular drugs induced hepatotoxicity in experimental rats (2017) J. Ayurveda Integr. Med., 8, pp. 7-12. , https://doi.org/10.1016/j.jaim.2016.10.005; Mukherjee, S., Ghosh, S., Choudhury, S., Adhikary, A., Manna, K., Dey, S., Sa, G., Chattopadhyay, S., Pomegranate reverses methotrexate-induced oxidative stress and apoptosis in hepatocytes by modulating Nrf2-NF-?B pathways (2013) J. Nutr. Biochem., 24, pp. 2040-2050. , https://doi.org/10.1016/j.jnutbio.2013.07.005; Nishikimi, M., Appaji Rao, N., Yagi, K., The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen (1972) Biochem. Biophys. Res. Commun., 46, pp. 849-854. , https://doi.org/10.1016/S0006-291X(72)80218-3; Nyandoro, S.S., Munissi, J.J.E., Kombo, M., Mgina, C.A., Pan, F., Gruhonjic, A., Fitzpatrick, P., Erdlyi, M., Flavonoids from Erythrina schliebenii (2017) J. Nat. Prod., 80, pp. 377-383. , https://doi.org/10.1021/acs.jnatprod.6b00839; OECD guidelines for the testing of chemicals, section 4, test no. 425: acute oral toxicity - up-and-down procedure (2001) Guidel. Test. Chem., 26. , https://doi.org/10.1787/9789264071049-en; Pravenec, M., Kozich, V., Krijt, J., Sokolov, J., Zdek, V., Landa, V., Simkov, M., Kurtz, T.W., Folate deficiency is associated with oxidative stress, increased blood pressure, and insulin resistance in spontaneously hypertensive rats (2013) Am. J. Hypertens., 26, pp. 135-140. , https://doi.org/10.1093/ajh/hps015; Setti-Perdigo, P., Serrano, M.A.R., Flausino, O.A., Bolzani, V.S., Guimares, M.Z.P., Castro, N.G., Erythrina mulungu alkaloids are potent inhibitors of neuronal nicotinic receptor currents in mammalian cells (2013) PLoS One, 8. , https://doi.org/10.1371/journal.pone.0082726; Stevens, J.F., Ivancic, M., Hsu, V.L., Deinzer, M.L., Prenylflavonoids from Humulus lupulus (1997) Phytochemistry, 44, pp. 1575-1585. , https://doi.org/10.1016/S0031-9422(96)00744-3; Stickel, F., Schuppan, D., Herbal medicine in the treatment of liver diseases (2007) Dig. Liver Dis., 39, pp. 293-304. , https://doi.org/10.1016/j.dld.2006.11.004; Tunali-Akbay, T., Sehirli, O., Ercan, F., Sener, G., Resveratrol protects against methotrexate-induced hepatic injury in rats (2010) J. Pharm. Pharm. Sci., 13, pp. 303-310; Wanjala, C.C.W., Majinda, R.R.T., Two novel glucodienoid alkaloids from Erythrina latissima seeds (2000) J. Nat. Prod., 63, pp. 871-873. , https://doi.org/10.1021/np990540d; Wu, W.N., Huang, C.H., Structural elucidation of isoquinoline, isoquinolone, benzylisoquinoline, aporphine, and phenanthrene alkaloids using API-ionspray tandem mass spectrometry (2006) Chinese Pharm. J., 58, pp. 41-55 | |
dcterms.source | Scopus |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- avatar_scholar_128.png
- Size:
- 2.73 KB
- Format:
- Portable Network Graphics
- Description: