Antifibrotic effects of gallic acid on hepatic stellate cells: In vitro and in vivo mechanistic study

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorEl-Lakkany N.M.
dc.contributor.authorEl-Maadawy W.H.
dc.contributor.authorSeif el-Din S.H.
dc.contributor.authorSaleh S.
dc.contributor.authorSafar M.M.
dc.contributor.authorEzzat, Shahira M
dc.contributor.authorMohamed S.H.
dc.contributor.authorBotros S.S.
dc.contributor.authorDemerdash Z.
dc.contributor.authorHammam O.A.
dc.contributor.otherDepartment of Pharmacology
dc.contributor.otherTheodor Bilharz Research Institute
dc.contributor.otherWarak El-Hadar
dc.contributor.otherImbaba P.O. Box 30
dc.contributor.otherGiza
dc.contributor.other12411
dc.contributor.otherEgypt; Department of Pharmacology and Toxicology
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherCairo University
dc.contributor.otherCairo
dc.contributor.other11562
dc.contributor.otherEgypt; Department of Pharmacognosy
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherCairo University
dc.contributor.otherCairo
dc.contributor.other11562
dc.contributor.otherEgypt; Department of Immunology
dc.contributor.otherTheodor Bilharz Research Institute
dc.contributor.otherWarak El-Hadar
dc.contributor.otherImbaba P.O. Box 30
dc.contributor.otherGiza
dc.contributor.other12411
dc.contributor.otherEgypt; Department of Pathology
dc.contributor.otherTheodor Bilharz Research Institute
dc.contributor.otherWarak El-Hadar
dc.contributor.otherImbaba P.O. Box 30
dc.contributor.otherGiza
dc.contributor.other12411
dc.contributor.otherEgypt; Department of Pharmacology and Biochemistry
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherThe British University in Egypt
dc.contributor.otherSuez Desert Road
dc.contributor.otherP.O. Box 43
dc.contributor.otherElSherouk City
dc.contributor.otherCairo 11837
dc.contributor.otherEgypt; Department of Pharmacognosy
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherOctober University for Modern Sciences and Arts (MSA)
dc.contributor.other6th of October
dc.contributor.otherGiza
dc.contributor.other12566
dc.contributor.otherEgypt
dc.date.accessioned2020-01-09T20:40:46Z
dc.date.available2020-01-09T20:40:46Z
dc.date.issued2019
dc.descriptionScopus
dc.descriptionMSA Google Scholar
dc.description.abstractFew studies reported the antifibrotic effects of gallic acid (GA) despite its known hepatoprotective and antioxidant activities. Accordingly, this study investigated the antifibrotic effects of GA through clarifying its mechanisms on hepatic stellate cells� (HSCs) activation, proliferation and/or apoptosis. In vitro effects of GA on HSC-T6 activation/proliferation, morphology and safety on hepatocytes were assessed. In vivo, hepatic fibrosis was induced via chronic thioacetamide (TAA)-intoxication. TAA-intoxicated rats were treated with silyamrin or GA. At end of experiment, liver functions, hepatic MDA, GSH, PDGF-BB, TGF-?1, TIMP-1 and hydroxyproline were determined. Histological analysis and Sirius red staining of hepatic sections, expressions of alpha-smooth muscle actin (?-SMA), proliferating cellular nuclear antigen (PCNA) and caspase-3 were examined. In vitro, GA resulted in a concentration and time-dependent inhibition in HSCs activation, proliferation (IC50= 45 and 19 ?g/mL at 24 and 48 h respectively); restored the quiescent morphology of some activated HSCs plus its safety on hepatocytes. In vivo, GA reduced ALT, AST, MDA, PDGF-BB levels, collagen deposition and fibrosis score (S1 vs S4); increased caspase-3 expression and restored GSH stores, TGF-?1 level, ?-SMA and PCNA expressions. In conclusion, GA counteracted the progression of hepatic fibrosis through reduction of HSCs proliferation/activation mutually with their apoptosis induction. � 2018 Center for Food and Biomolecules, National Taiwan Universityen_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=21100287117&tip=sid&clean=0
dc.identifier.doihttps://doi.org/10.1016/j.jtcme.2018.01.010
dc.identifier.doiPubMed ID :
dc.identifier.issn22254110
dc.identifier.otherhttps://doi.org/10.1016/j.jtcme.2018.01.010
dc.identifier.otherPubMed ID :
dc.identifier.urihttps://t.ly/7OJlB
dc.language.isoEnglishen_US
dc.publisherNational Taiwan Universityen_US
dc.relation.ispartofseriesJournal of Traditional and Complementary Medicine
dc.relation.ispartofseries9
dc.subjectApoptosisen_US
dc.subjectGallic aciden_US
dc.subjectHepatic stellate cellsen_US
dc.subjectHepatocytesen_US
dc.subjectProliferation/activationen_US
dc.titleAntifibrotic effects of gallic acid on hepatic stellate cells: In vitro and in vivo mechanistic studyen_US
dc.typeArticleen_US
dcterms.isReferencedByRamachandran, P., Iredale, J.P., Liver fibrosis: a bidirectional model of fibrogenesis and resolution (2012) QJM, 105, pp. 813-817; Iredale, J.P., Models of liver fibrosis: exploring the dynamic nature of inflammation and repair in a solid organ (2007) J Clin Invest, 117, pp. 539-548; Wynn, T.A., Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases (2007) J Clin Invest, 117, pp. 524-529; Friedman, S.L., Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver (2008) Physiol Rev, 88, pp. 125-172; Kisseleva, T., Brenner, D.A., Hepatic stellate cells and the reversal of fibrosis (2006) J Gastroenterol Hepatol, 21, pp. S84-S87; Li, J.T., Liao, Z.X., Ping, J., Xu, D., Wang, H., Molecular mechanism of hepatic stellate cell activation and antifibrotic therapeutic strategies (2008) J Gastroenterol, 43, pp. 419-428; Hauff, P., Gottwald, U., Ocker, M., Early to Phase II drugs currently under investigation for the treatment of liver fibrosis (2015) Expet Opin Invest Drugs, 24, pp. 309-327; Xie, H., Hou, W., Yang, Y., Yu, Y., Wang, F., Mao, J., Effects of Shenqi Neijin powder on activation and apoptosis of hepatic stellate cells in rats with hepatic fibrosis (2015) Int J Clin Exp Med, 8, pp. 2226-2232; Chen, S.R., Chen, X.P., Lu, J.J., Wang, Y., Wang, Y.T., Potent natural products and herbal medicines for treating liver fibrosis (2015) Chin Med, 10, p. 7; Hong, M., Li, S., Tan, H.Y., Wang, N., Tsao, S.W., Feng, Y., Current status of herbal medicines in chronic liver disease therapy: the biological effects, molecular targets and future prospects (2015) Int J Mol Sci, 16, pp. 28705-28745; Srivastava, A., Shivanandappa, T., Stereospecificity in the cytotoxic action of hexachlorocyclohexane isomers (2010) Chem Biol Interact, 183, pp. 34-39; G�mez-Caravaca, A.M., Verardo, V., Toselli, M., Segura-Carretero, A., Fern�ndez-Guti�rrez, A., Caboni, M.F., Determination of the major phenolic compounds in pomegranate juices by HPLC?DAD?ESI-MS (2013) J Agric Food Chem, 61, pp. 5328-5337; Li, Y.F., Guo, C.J., Yang, J.J., Wei, J.Y., Xu, J., Cheng, S., Evaluation of antioxidant properties of pomegranate peel extract in comparison with pomegranate pulp extract (2006) Food Chem, 96, pp. 254-260; Elango, S., Balwas, R., Padma, V.V., Gallic acid isolated from pomegranate peel extract induces reactive oxygen species mediated apoptosis in A549 cell line (2011) J Canc Ther, 2, pp. 638-645; Kim, Y.J., Antimelanogenic and antioxidant properties of gallic acid (2007) Biol Pharm Bull, 30, pp. 1052-1055; Liu, K.Y., Hu, S., Chan, B.C., Anti-inflammatory and anti-allergic activities of Pentaherb formula, Moutan Cortex (Danpi) and gallic acid (2013) Molecules, 18, pp. 2483-2500; Faried, A., Kurnia, D., Faried, L.S., Anticancer effects of gallic acid isolated from Indonesian herbal medicine, Phaleria macrocarpa (Scheff.) Boerl, on human cancer cell lines (2007) Int J Oncol, 30, pp. 605-613; Jadon, A., Bhadauria, M., Shukla, S., Protective effect of Terminalia belerica Roxb. and gallic acid against carbon tetrachloride induced damage in albino rats (2007) J Ethnopharmacol, 109, pp. 214-218; Inoue, M., Sakaguchi, N., Isuzugawa, K., Tani, H., Ogihara, Y., Role of reactive oxygen species in gallic acid-induced apoptosis (2000) Biol Pharm Bull, 23, pp. 1153-1157; Chuang, C.Y., Liu, H.C., Wu, L.C., Chen, C.Y., Chang, J.T., Hsu, S.L., Gallic acid induces apoptosis of lung fibroblasts via a reactive oxygen species-dependent ataxia telangiectasia mutated-p53 activation pathway (2010) J Agric Food Chem, 58, pp. 2943-2951; Chang, Y.J., Hsu, S.L., Liu, Y.T., Gallic acid induces necroptosis via TNF-? signaling pathway in activated hepatic stellate cells (2015) PLoS One, 10; Hsieh, S.C., Wu, C.H., Wu, C.C., Gallic acid selectively induces the necrosis of activated hepatic stellate cells via a calcium-dependent calpain I activation pathway (2014) Life Sci, 102, pp. 55-64; Wang, J., Tang, L., White, J., Fang, J., Inhibitory effect of gallic acid on CCl4-mediated liver fibrosis in mice (2014) Cell Biochem Biophys, 69, pp. 21-26; Singh, R.P., Chidambara Murthy, K.N., Jayaprakasha, G.K., Studies on the antioxidant activity of pomegranate (Punica granatum) peel and seed extracts using in vitro models (2002) J Agric Food Chem, 50, pp. 81-86; Vogel, S., Piantedosi, R., Frank, J., An immortalized rat liver stellate cell line (HSC-T6): a new cell model for the study of retinoid metabolism in vitro (2000) J Lipid Res, 41, pp. 882-893; Seglen, P.O., Preparation of isolated rat liver cells (1976) Meth Cell Biol, 13, pp. 29-83; Skehan, P., Storeng, R., Scudiero, D., New colorimetric cytotoxicity assay for anticancer-drug screening (1990) J Natl Cancer Inst., 82, pp. 1107-1112; Mosmann, T., Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays (1983) J Immunol Meth, 65, pp. 55-63; Kadir, F.A., Kassim, N.M., Abdulla, M.A., Yehye, W.A., Hepatoprotective role of ethanolic extract of Vitex negundo in thioacetamide-induced liver fibrosis in male rats (2013) Evid Based Complement Alternat Med., 2013, p. 739850; Vijaya Padma, V., Sowmya, P., Arun Felix, T., Baskaran, R., Poornima, P., Protective effect of gallic acid against lindane induced toxicity in experimental rats (2011) Food Chem Toxicol, 49, pp. 991-998; Reitman, S., Frankel, S., A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases (1957) Am J Clin Pathol, 28, pp. 56-63; Ellman, G.L., Tissue sulfhydryl groups (1959) Arch Biochem Biophys, 82, pp. 70-77; Ohkawa, H., Ohishi, N., Yagi, K., Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction (1979) Anal Biochem, 95, pp. 351-358; Woessner, J.F., Jr., The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid (1961) Arch Biochem Biophys, 93, pp. 440-447; Li, L., Hu, Z., Li, W., Establishment of a standardized liver fibrosis model with different pathological stages in rats (2012) Gastroenterol Res Pract., 2012, p. 560345; Atta, H.M., Al-Hendy, A., Salama, S.A., Shaker, O.G., Hammam, O.A., Low-dose simultaneous delivery of adenovirus encoding hepatocyte growth factor and vascular endothelial growth factor in dogs enhances liver proliferation without systemic growth factor elevation (2009) Liver Int, 29, pp. 1022-1030; Shen, H.W., Yi, L., Wang, X.M., Expression of Caspase-3 and Bcl-2 in bladder transitional carcinoma and their significance (2004) Ai Zheng, 23, pp. 181-184; Upadhyaya, K., Hamidullah Singh, K., Arun, A., Identification of gallic acid based glycoconjugates as a novel tubulin polymerization inhibitors (2016) Org Biomol Chem, 14, pp. 1338-1358; Lee, U.E., Friedman, S.L., Mechanisms of hepatic fibrogenesis (2011) Best Pract Res Clin Gastroenterol, 25, pp. 195-206; de la Lastra, C.A., Villegas, I., Resveratrol as an antioxidant and pro-oxidant agent: mechanisms and clinical implications (2007) Biochem Soc Trans, 35, pp. 1156-1160; Maurya, D.K., Devasagayam, T.P., Antioxidant and prooxidant nature of hydroxycinnamic acid derivatives ferulic and caffeic acids (2010) Food Chem Toxicol, 48, pp. 3369-3373; Traister, A., Breitman, I., Bar-Lev, E., Nicotinamide induces apoptosis and reduces collagen I and pro-inflammatory cytokines expression in rat hepatic stellate cells (2005) Scand J Gastroenterol, 40, pp. 1226-1234; Ishikawa, Y., Kitamura, M., Unexpected suppression of alpha-smooth muscle actin, the activation marker of mesangial cells, by pp60v-src tyrosine kinase (1998) Biochem Biophys Res Commun, 244, pp. 806-811; Mayer, K.E., Myers, R.P., Lee, S.S., Silymarin treatment of viral hepatitis: a systematic review (2005) J Viral Hepat, 12, pp. 559-567; Pradhan, S.C., Girish, C., Hepatoprotective herbal drug, silymarin from experimental pharmacology to clinical medicine (2006) Indian J Med Res, 124, pp. 491-504; Muriel, P., Rivera-Espinoza, Y., Beneficial drugs for liver diseases (2008) J Appl Toxicol, 28, pp. 93-103; Jancov�, P., Anzenbacherov�, E., Papouskov�, B., Silybin is metabolized by cytochrome P450 2C8 in vitro (2007) Drug Metab Dispos, 35, pp. 2035-2039; Basheer, L., Kerem, Z., Interactions between CYP3A4 and dietary polyphenols (2015) Oxid Med Cell Longev., 2015, p. 854015; Stupans, L., Tan, H.W., Kirlich, A., Inhibition of CYP3A-mediated oxidation in human hepatic microsomes by the dietary derived complex phenol, gallic acid (2002) J Pharm Pharmacol, 54, pp. 269-275; Madrigal-Santill�n, E., Madrigal-Bujaidar, E., �lvarez-Gonz�lez, I., Review of natural products with hepatoprotective effects (2014) World J Gastroenterol, 20, pp. 14787-14804; Lukivskaya, O., Patsenker, E., Lis, R., Buko, V.U., Inhibition of inducible nitric oxide synthase activity prevents liver recovery in rat thioacetamide-induced fibrosis reversal (2008) Eur J Clin Invest, 38, pp. 317-325; Lu, Z., Nie, G., Belton, P.S., Tang, H., Zhao, B., Structure-activity relationship analysis of antioxidant ability and neuroprotective effect of gallic acid derivatives (2006) Neurochem Int, 48, pp. 263-274; Bassiouny, A.R., Zaky, A.Z., Abdulmalek, S.A., Kandeel, K.M., Ismail, A., Moftah, M., Modulation of AP-endonuclease1 levels associated with hepatic cirrhosis in rat model treated with human umbilical cord blood mononuclear stem cells (2011) Int J Clin Exp Pathol, 4, pp. 692-707; Friedman, S.L., Mechanisms of hepatic fibrogenesis (2008) Gastroenterology, 134, pp. 1655-1669; Kang, N., Gores, G.J., Shah, V.H., Hepatic stellate cells: partners in crime for liver metastases? (2011) Hepatology, 54, pp. 707-713; Borkham-Kamphorst, E., Kovalenko, E., van Roeyen, C.R., Platelet-derived growth factor isoform expression in carbon tetrachloride-induced chronic liver injury (2008) Lab Invest, 88, pp. 1090-1100; Tsukada, S., Parsons, C.J., Rippe, R.A., Mechanisms of liver fibrosis (2006) Clin Chim Acta, 364, pp. 33-60; Di Lullo, G.A., Sweeney, S.M., Korkko, J., Ala-Kokko, L., San Antonio, J.D., Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen (2002) J Biol Chem, 277, pp. 4223-4231; Rao, H.Y., Wei, L., Li, J., Liver fibrosis and hepatic stellate cells improvement of chronic hepatitis C patients by interferon-beta-1a with or without sustained viral response (2009) Hepatogastroenterology, 56, pp. 328-334; Preaux, A.M., D'ortho, M.P., Bralet, M.P., Laperche, Y., Mavier, P., Apoptosis of human hepatic myofibroblasts promotes activation of matrix metalloproteinase-2 (2002) Hepatology, 36, pp. 615-622; Liu, X.W., Bernardo, M.M., Fridman, R., Kim, H.R., Tissue inhibitor of metalloproteinase-1 protects human breast epithelial cells against intrinsic apoptotic cell death via the focal adhesion kinase/phosphatidylinositol 3-kinase and MAPK signaling pathway (2003) J Biol Chem, 278, pp. 40364-40372; Hagens, W.I., Beljaars, L., Mann, D.A., Cellular targeting of the apoptosis-inducing compound gliotoxin to fibrotic rat livers (2008) J Pharmacol Exp Therapeut, 324, pp. 902-910; Troeger, J.S., Mederacke, I., Gwak, G.Y., Deactivation of hepatic stellate cells during liver fibrosis resolution in mice (2012) Gastroenterology, 143, pp. 1073-1083
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
avatar_scholar_128.png
Size:
2.73 KB
Format:
Portable Network Graphics
Description:
Loading...
Thumbnail Image
Name:
1-s2.0-S2225411018300105-main.pdf
Size:
2 MB
Format:
Adobe Portable Document Format
Description: