Looking at marine-derived bioactive molecules as upcoming anti-diabetic agents: A special emphasis on PTP1B inhibitors

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorEzzat, Shahira M
dc.contributor.authorEl Bishbishy M.H.
dc.contributor.authorHabtemariam S.
dc.contributor.authorSalehi B.
dc.contributor.authorSharifi-Rad M.
dc.contributor.authorMartins N.
dc.contributor.authorSharifi-Rad J.
dc.contributor.otherPharmacognosy Department
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherCairo University
dc.contributor.otherKasr El-Ainy Street
dc.contributor.otherCairo
dc.contributor.other11562
dc.contributor.otherEgypt; Department of Pharmacognosy
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherOctober University for Modern Science and Arts (MSA)
dc.contributor.otherCairo
dc.contributor.other12566
dc.contributor.otherEgypt; Herbal Analysis Services UK
dc.contributor.otherPharmacognosy Research Laboratories
dc.contributor.otherUniversity of Greenwich
dc.contributor.otherCentral Avenue
dc.contributor.otherChatham-Maritime
dc.contributor.otherKent
dc.contributor.otherME4 4TB
dc.contributor.otherUnited Kingdom; Student Research Committee
dc.contributor.otherBam University of Medical Sciences
dc.contributor.otherBam
dc.contributor.other44340847
dc.contributor.otherIran; Department of Medical Parasitology
dc.contributor.otherZabol University of Medical Sciences
dc.contributor.otherZabol
dc.contributor.other61663-335
dc.contributor.otherIran; Institute for Research and Innovation in Health (i3S)
dc.contributor.otherUniversity of Porto
dc.contributor.otherPorto
dc.contributor.other4200-135
dc.contributor.otherPortugal; Faculty of Medicine
dc.contributor.otherUniversity of Porto
dc.contributor.otherAlameda Prof. Hern�ni Monteiro
dc.contributor.otherPorto
dc.contributor.other4200-319
dc.contributor.otherPortugal; Zabol Medicinal Plants Research Center
dc.contributor.otherZabol University of Medical Sciences
dc.contributor.otherZabol
dc.contributor.other61615-585
dc.contributor.otherIran; Department of Chemistry
dc.contributor.otherRichardson College for the Environmental Science Complex
dc.contributor.otherUniversity of Winnipeg
dc.contributor.other599 Portage Avenue
dc.contributor.otherWinnipeg
dc.contributor.otherMB R3B 2G3
dc.contributor.otherCanada
dc.date.accessioned2020-01-09T20:40:47Z
dc.date.available2020-01-09T20:40:47Z
dc.date.issued2018
dc.descriptionScopus
dc.descriptionMSA Google Scholar
dc.description.abstractDiabetes mellitus (DM) is a chronic metabolic disease with high morbimortality rates. DM has two types: type 1, which is often associated with a total destruction of pancreatic beta cells, and non-insulin-dependent or type 2 diabetes mellitus (T2DM), more closely associated with obesity and old age. The main causes of T2DM are insulin resistance and/or inadequate insulin secretion. Protein-tyrosine phosphatase 1B (PTP1B) negatively regulates insulin signaling pathways and plays an important role in T2DM, as its overexpression may induce insulin resistance. Thus, since PTP1B may be a therapeutic target for both T2DM and obesity, the search for novel and promising natural inhibitors has gained much attention. Hence, several marine organisms, including macro and microalgae, sponges, marine invertebrates, sea urchins, seaweeds, soft corals, lichens, and sea grasses, have been recently evaluated as potential drug sources. This review provides an overview of the role of PTP1B in T2DM insulin signaling and treatment, and highlights the recent findings of several compounds and extracts derived from marine organisms and their relevance as upcoming PTP1B inhibitors. In this systematic literature review, more than 60 marine-derived metabolites exhibiting PTP1B inhibitory activity are listed. Their chemical classes, structural features, relative PTP1B inhibitory potency (assessed by IC50 values), and structure�activity relationships (SARs) that could be drawn from the available data are discussed. The upcoming challenge in the field of marine research�metabolomics�is also addressed. � 2018 by the authors.en_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=26370&tip=sid&clean=0
dc.identifier.doihttps://doi.org/10.3390/molecules23123334
dc.identifier.doiPubMed ID 30558294
dc.identifier.issn14203049
dc.identifier.otherhttps://doi.org/10.3390/molecules23123334
dc.identifier.otherPubMed ID 30558294
dc.identifier.urihttps://t.ly/w18Vd
dc.language.isoEnglishen_US
dc.publisherMDPI AGen_US
dc.relation.ispartofseriesMolecules
dc.relation.ispartofseries23
dc.subjectInsulin signaling pathwaysen_US
dc.subjectMarine metabolitesen_US
dc.subjectProtein-tyrosine phosphatase 1Ben_US
dc.subjectType 2 diabetes mellitusen_US
dc.subjectantidiabetic agenten_US
dc.subjectenzyme inhibitoren_US
dc.subjectprotein tyrosine phosphatase 1Ben_US
dc.subjectanimalen_US
dc.subjectantagonists and inhibitorsen_US
dc.subjectchemistryen_US
dc.subjectecosystemen_US
dc.subjecthumanen_US
dc.subjectisolation and purificationen_US
dc.subjectmetabolismen_US
dc.subjectAnimalsen_US
dc.subjectEcosystemen_US
dc.subjectEnzyme Inhibitorsen_US
dc.subjectHumansen_US
dc.subjectHypoglycemic Agentsen_US
dc.subjectProtein Tyrosine Phosphatase, Non-Receptor Type 1en_US
dc.titleLooking at marine-derived bioactive molecules as upcoming anti-diabetic agents: A special emphasis on PTP1B inhibitorsen_US
dc.typeArticleen_US
dcterms.isReferencedByAl-Lawati, J.A., Diabetes mellitus: A local and global public health emergency! (2017) Om. Med. J., 32, pp. 177-179. , CrossRef PubMed; Xiao, J.B., H�gger, P., Dietary polyphenols and type 2 diabetes: Current insights and future perspectives (2015) Curr. Med. Chem., 22, pp. 23-38. , CrossRef PubMed; Cho, N.H., Shaw, J.E., Karuranga, S., Huang, Y., Da Rocha Fernandes, J.D., Ohlrogge, A.W., Malanda, B., IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045 (2018) Diabetes Res. Clin. Pract., 138, pp. 271-281. , CrossRef PubMed; Classification and diagnosis of diabetes (2015) Diabetes Care, 40, pp. S11-S24. , American Diabetes Association; Dub�, N., Tremblay, M.L., Involvement of the small protein tyrosine phosphatases TC-PTP and PTP1B in signal transduction and diseases: From diabetes, obesity to cell cycle, and cancer (2005) Biochim. Biophys. Acta, 1754, pp. 108-117; Brownlee, M., Biochemistry and molecular cell biology of diabetic complications (2001) Nature, 414, pp. 813-820. , CrossRef PubMed; Lee, S.H., Min, K.H., Han, J.S., Lee, D.H., Park, D.B., Jung, W.K., Park, P.J., Jeon, Y.J., Effects of brown alga, Ecklonia cava on glucose and lipid metabolism in C57BL/KsJ- Db/db mice, a model of type 2 diabetes mellitus (2012) Food Chem. Toxicol., 50, pp. 575-582; Pontiroli, A.E., Type 2 diabetes mellitus is becoming the most common type of diabetes in school children (2004) Acta Diabetol, 41, pp. 85-90; Thilagam, E., Parimaladevi, B., Kumarappan, C., Mandal, S.C., ?-Glucosidase and ?-amylase inhibitory activity of Senna surattensis (2013) J. Acupunct. Meridian Stud., 6, pp. 24-30; Jung, M., Park, M., Lee, H.C., Kang, Y.H., Kang, E.S., Kim, S.K., Antidiabetic agents from medicinal plants (2006) Curr. Med. Chem., 13, pp. 1203-1218; Ray, S.D., Side effects of drugs annual (2017) A Worldwide Yearly Survey of New Data in Adverse Drug Reactions, , Elsevier: Waltham, MA, USA; Scheen, A.J., Lefebvre, P.J., Troglitazone: Antihyperglycemic activity and potential role in the treatment of type 2 diabetes (1999) Diabetes Care, 22, pp. 1568-1577. , CrossRef PubMed; Ahmad, F., Li, P.M., Meyerovitch, J., Goldstein, B.J., Osmotic loading of neutralizing antibodies demonstrates a role for protein-tyrosine phosphatase 1B in negative regulation of the insulin action pathway (1995) J. Biol. Chem., 270, pp. 20503-20508. , CrossRef PubMed; Zinker, B.A., Rondinone, C.M., Trevillyan, J.M., Gum, R.J., Clampit, J.E., Waring, J.F., Xie, N., Frost, L., PTP1B antisense oligonucleotide lowers PTP1B protein, normalizes blood glucose, and improves insulin sensitivity in diabetic mice (2002) Proc. Nat. Acad. Sci. USA, 99, pp. 11357-11362. , CrossRef PubMed; Johnson, T.O., Ermolieff, J., Jirousek, M.R., Protein tyrosine phosphatase 1B inhibitors for diabetes (2002) Nat. Rev. Drug Discov., 1, pp. 696-709. , CrossRef PubMed; Zhang, S., Zhang, Z.Y., PTP1B as a drug target: Recent developments in PTP1B inhibitor discovery (2007) Drug Discov. Today, 12, pp. 373-381; Zhang, Z.Y., Lee, S.Y., PTP1B inhibitors as potential therapeutics in the treatment of type 2 diabetes and obesity (2003) Expert Opin. Investig. Drugs, 12, pp. 223-233; Bandyopadhyay, D., Kusari, A., Kenner, K.A., Liu, F., Chernoff, J., Gustafson, T.A., Kusari, J., Protein-tyrosine phosphatase 1B complexes with the insulin receptor in vivo and is tyrosine-phosphorylated in the presence of insulin (1997) J. Biol. Chem., 272, pp. 1639-1645; Goldstein, B.J., Bittner-Kowalczyk, A., White, M.F., Harbeck, M., Tyrosine dephosphorylation and deactivation of insulin receptor substrate-1 by protein-tyrosine phosphatase 1B. Possible facilitation by the formation of a ternary complex with the Grb2 adaptor protein (2000) J. Biol. Chem., 275, pp. 4283-4289; Lund, I.K., Hansen, J.A., Andersen, H.S., Moller, N.P.H., Andersen, B.N., Mechanism of protein tyrosine phosphatase 1B-mediated inhibition of leptin signalling (2005) J. Mol. Endocrinol., 34, pp. 339-351; Byon, J.C.H., Kusari, A.B., Kusari, J., Protein-tyrosine phosphatase-1B acts as a negative regulator of insulin signal transduction (1998) Mol. Cell. Biochem., 182, pp. 101-108; Kenner, K.A., Anyanwu, E., Olefsky, J.M., Kusari, J., Protein-tyrosine phosphatase 1B is a negative regulator of insulin- And insulin-like growth factor-I-stimulated signaling (1996) J. Biol. Chem., 271, pp. 19810-19816. , CrossRef PubMed; Meshkani, R., Taghikhani, M., Al-Kateb, H., Larijani, B., Khatami, S., Sidiropoulos, G.K., Hegele, R.A., Adeli, K., Polymorphisms within the protein tyrosine phosphatase 1B (PTPN1) gene promoter: Functional characterization and association with type 2 diabetes and related metabolic traits (2007) Clin. Chem., 53, pp. 1585-1592. , CrossRef PubMed; Elchebly, M., Payette, P., Michaliszy, E., Cromlish, W., Collins, S., Loy, A.L., Normandin, D., Chan, C., Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene (1999) Science, 283, pp. 1544-1548. , CrossRef PubMed; Klaman, L.D., Boss, O., Peroni, O.D., Kim, J.K., Martino, J.L., Zabolotny, J.M., Moghal, N., Sharpe, A.H., Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in proteintyrosine phosphatase 1B-deficient mice (2000) Mol. Cell. Biol., 20, pp. 5479-5489. , CrossRef PubMed; Bence, K.K., Delibegovic, M., Xue, B., Gorgun, C.Z., Hotamisligil, G.S., Neel, B.G., Kahn, B.B., Neuronal PTP1B regulates body weight, adiposity and leptin action (2006) Nat. Med., 12, pp. 917-924. , CrossRef PubMed; Zhao, H., Liu, G., Xin, Z., Serby, M.D., Pei, Z., Szczepankiewicz, B.G., Hajduk, P.J., Lubben, T.H., Jirousek, Isoxazole carboxylic acids as protein tyrosine phosphatase 1B (PTP1B) inhibitors (2004) Bioorgan. Med. Chem. Lett., 14, pp. 5543-5546. , CrossRef PubMed; Leung, K.W., Posner, B.I., Just, G., Periodinates: A new class of protein tyrosine phosphatase inhibitors (1999) Bioorg. Med. Chem. Lett., 9, pp. 353-356; Andersen, H.S., Olsen, O.H., Iversen, L.F., Sorensen, A.L.P., Mortensen, S.B., Christensen, M., Branner, S., Jeppesen, L., Discovery and SAR of a novel selective and orally bioavailable nonpeptide classical competitive inhibitor class of protein-tyrosine phosphatase 1B (2002) J. Med. Chem., 45, pp. 4443-4459; Wilson, D.P., Wan, Z.K., Xu, W.X., Kirincich, S.J., Follows, B.C., Joseph-McCarthy, D., Foreman, K., Zhu, M., Structure-based optimization of protein tyrosine phosphatase 1B inhibitors: From the active site to the second phosphotyrosine binding site (2007) J. Med. Chem., 50, pp. 4681-4698; Liu, S., Zeng, L.F., Wu, L., Yu, X., Xue, T., Gunawan, A.M., Long, Y.Q., Zhang, Z.Y., Targeting inactive enzyme conformation: Aryl diketoacid derivatives as a new class of PTP1B inhibitors (2008) J. Am. Chem. Soc., 130, pp. 17075-17084; Lee, S.H., Ko, S.C., Kang, M.C., Lee, D.H., Jeon, Y.J., Octaphlorethol a, a marine algae product, exhibits antidiabetic effects in type 2 diabetic mice by activating amp-activated protein kinase and upregulating the expression of glucose transporter 4 (2016) Food Chem. Toxicol., 91, pp. 58-64. , CrossRef PubMed; Manikkam, V., Vasiljevic, T., Donkor, O.N., Mathai, M.L., A review of potential marine-derived hypotensive and anti-obesity peptides (2016) Crit. Rev. Food Sci. Nutr., 56, pp. 92-112. , CrossRef PubMed; Ruocco, N., Costantini, S., Guariniello, S., Costantini, M., Polysaccharides from the marine environment with pharmacological, cosmeceutical and nutraceutical potential (2016) Molecules, 21, p. 551. , CrossRef PubMed; Saleh, A.S.M., Zhang, Q., Shen, Q., Recent research in antihypertensive activity of food protein-derived hydrolyzates and peptides (2016) Crit. Rev. Food Sci. Nutr., 56, pp. 760-787. , CrossRef PubMed; Suleria, H.�.R., Gobe, G., Masci, P., Osborne, S.A., Marine bioactive compounds and health promoting perspectives; innovation pathways for drug discovery (2016) Trends Food Sci. Technol., 50, pp. 44-55; Choochote, W., Suklampoo, L., Ochaikul, D., Evaluation of antioxidant capacities of green microalgae (2014) J. Appl. Phycol., 26, pp. 43-48; Zhao, C., Wu, Y.J., Yang, C.F., Liu, B., Huang, Y.F., Hypotensive, hypoglycemic and hypolipidemic effects of bioactive compounds from microalgae and marine microorganisms (2015) Int. J. Food Sci. Technol., 50, pp. 1705-1717; Khan, W., Rayirath, U.P., Subramanian, S., Jithesh, M.N., Rayorath, P., Hodges, D.M., Critchley, A.T., Prithiviraj, B., Seaweed extracts as biostimulants of plant growth and development (2009) J. Plant Growth Regul., 28, pp. 386-399; Pangestuti, R., Kim, S.K., Biological activities and health benefit effects of natural pigments derived from marine algae (2011) J. Funct. Foods, 3, pp. 255-266; Mohamed, S., Hashim, S.N., Rahman, H.A., Seaweeds: A sustainable functional food for complementary and alternative therapy (2012) Trends Food Sci. Technol., 23, pp. 83-96; Gupta, S., Abu-Ghannam, N., Bioactive potential and possible health effects of edible brown seaweeds (2011) Trends Food Sci. Technol., 22, pp. 315-326; Jiang, C.S., Liang, L.F., Guo, Y.W., Natural products possessing protein tyrosine phosphatase 1B (PTP1B) inhibitory activity found in the last decades (2012) Acta Pharmacol. Sin., 33, pp. 1217-1245. , CrossRef PubMed; Blunt, J.W., Copp, B.R., Hu, W.P., Munro, M.H., Northcote, P.T., Prinsep, M.R., Marine natural products (2009) Nat. Prod. Rep, 26, pp. 170-244. , CrossRef PubMed; Yamazaki, H., Sumilat, D.A., Kanno, S., Ukai, K., Rotinsulu, H., Wewengkang, D.S., Ishikawa, M., Namikoshi, M., A polybromodiphenyl ether from an Indonesian marine sponge Lamellodysidea herbacea and its chemical derivatives inhibit protein tyrosine phosphatase 1B, an important target for diabetes treatment (2013) J. Nat. Med., 67, pp. 730-735. , CrossRef PubMed; Li, Y., Zhang, Y., Shen, X., Guo, Y.W., A novel sesquiterpene quinone from Hainan sponge Dysidea villosa (2009) Bioorgan. Med. Chem. Lett., 19, pp. 390-392. , CrossRef PubMed; Kurihara, H., Mitain, T., Kawabata, J., Takahashi, K., Inhibitory potencies of bromophenols from Rhodomelaceae algae against ?-glucosidase activity (1999) Fish Sci, 65, pp. 300-303; Kurihara, H., Mitain, T., Kawabata, J., Takahashi, K., Two new bromophenols from the red alga Odonthalia corymbifera (1999) J. Nat. Prod., 62, pp. 882-884; Se-Kwon, K., Steve, T., (2011) Marine Medicinal Foods: Implications and Applications, Macro and Microalgae, , Academic Press: Waltham, MA, USA; Shi, D., Xu, F., Li, J., Guo, S.J., Su, H., Han, L.J., PTP1B inhibitory activities of bromophenol derivatives from algae (2008) Chin. J. Chin. Mater. Med., 33, pp. 2238-2240; Shi, D., Guo, S., Jiang, B., Guo, C., Wang, T., Zhang, L., Li, J., HPN, a synthetic analogue of bromophenol from red alga Rhodomela confervoides: Synthesis and anti-diabetic effects in C57BL/KsJ-db/db mice (2013) Mar. Drugs, 11, pp. 350-362; Shi, D., Li, J., Jiang, B., Guo, S., Su, H., Wang, T., Bromophenols as inhibitors of protein tyrosine phosphatase 1B with antidiabetic properties (2012) Bioorgan. Med. Chem. Lett., 22, pp. 2827-2832; Shi, D., Feng, X., He, J., Li, J., Fan, X., Han, L., Inhibition of bromophenols against PTP1B and anti-hyperglycemic effect of Rhodomela confervoides extract in diabetic rats (2008) Chin. Sci. Bull., 53, pp. 2476-2479; Shoeib, N.A., Bibby, M.C., Blunden, G., Linley, P.A., Swaine, D.J., Wheelhouse, R.T., Wright, C.W., In-vitro cytotoxic activities of the major bromophenols of the red alga Polysiphonia lanosa and some novel synthetic isomers (2004) J. Nat. Prod., 67, pp. 1445-1449. , CrossRef PubMed; Liu, X., Li, X., Gao, L., Cui, C., Li, C., Li, J., Wang, B., Extraction and PTP1B inhibitory activity of bromophenols from the marine red alga Symphyocladia latiuscula (2011) Chin. J. Oceanol. Limnol., 29, pp. 686-690; Kim, K.Y., Nam, K.A., Kurihara, H., Kim, S.M., Potent alpha-glucosidase inhibitors purified from the red alga Grateloupia elliptica (2008) Phytochemistry, 69, pp. 2820-2825. , CrossRef PubMed; Kim, K.Y., Nam, K.A., Kurihara, H., Kim, S.M., Alpha-glucosidase inhibitory activity of bromophenol purified from the red alga Polyopes lancifolia (2010) J. Food Sci., 75, pp. H145-H150; Suzen, S., Buyukbingol, E., Recent studies of aldose reductase enzyme inhibition for diabetic complications (2003) Curr. Med. Chem., 10, pp. 1329-1352. , CrossRef PubMed; Wang, W., Okada, Y., Shi, H., Wang, Y., Okuyama, T., Structures and aldose reductase inhibitory effects of bromophenols from the red alga Symphyocladia latiuscula (2005) J. Nat. Prod., 68, pp. 620-622. , CrossRef PubMed; Qin, J., Su, H., Zhang, Y., Gao, J., Zhu, L., Wu, X., Pan, H., Li, X., Highly brominated metabolites from marine red alga Laurencia similis inhibit protein tyrosine phosphatase 1B (2010) Bioorgan. Med. Chem. Lett., 20, pp. 7152-7154; Faulkner, D., (1977) Marine Natural Product Chemistry, , Springer: New York, NY, USA; Targett, N.M., Arnold, T.M., Predicting the effects of brown algal phlorotannins on marine herbivores in tropical and temperate oceans (1998) J. Phycol., 34, pp. 195-205; Riitta, K., (2008) Brown Algal Phlorotannins: Improving and Applying Chemical Methods, , University of Turku: Turku, Finland; Jung, H.A., Yoon, N.Y., Woo, M.H., Choi, J.S., Inhibitory activities of extracts from several kinds of seaweeds and phlorotannins from the brown alga Ecklonia stolonifera on glucose-mediated protein damage and rat lens aldose reductase (2008) Fish. Sci., 74, pp. 1363-1365; Moon, H.E., Islam, N., Ahn, B.R., Chowdhury, S.S., Sohn, H.S., Jung, H.A., Choi, J.S., Protein tyrosine phosphatase 1B and ?-glucosidase inhibitory Phlorotannins from edible brown algae, Ecklonia stolonifera and Eisenia bicyclis (2011) Biosci. Biotechnol. Biochem., 75, pp. 1472-1480. , CrossRef PubMed; Okada, Y., Ishimaru, A., Suzuki, R., Okuyama, T., A new phloroglucinol derivative from the brown alga Eisenia bicyclis: Potential for the effective treatment of diabetic complications (2004) J. Nat. Prod., 67, pp. 103-105. , CrossRef PubMed; Abdul, Q.A., Choi, R.J., Jung, H.A., Choi, J.S., Health benefit of fucosterol from marine algae: A review (2016) J. Sci. Food Agric., 96, pp. 1856-1866. , CrossRef PubMed; Zhou, X., Sun, J., Ma, W., Fang, W., Chen, Z., Yang, B., Liu, Y., Bioactivities of six sterols isolated from marine invertebrates (2014) Pharm. Biol., 52, pp. 187-190. , CrossRef PubMed; Jung, H.A., Islam, M.N., Lee, C.M., Oh, S.H., Lee, S., Jung, J.H., Choi, J.S., Kinetics and molecular docking studies of an anti-diabetic complication inhibitor fucosterol from edible brown algae Eisenia bicyclis and Ecklonia stolonifera (2013) Chemico-Biol. Interact., 206, pp. 55-62. , CrossRef PubMed; Jiao, W.H., Huang, X.J., Yang, J.S., Yang, F., Piao, S.J., Gao, H., Li, J., Chen, W.S., Dysidavarones A-D, new sesquiterpene quinones from the marine sponge Dysidea avara (2012) Org. Lett., 14, pp. 202-205; Zhang, Y.L., Guo, Y.W., Jiang, H.L., Shen, X., A sesquiterpene quinone, dysidine, from the sponge Dysidea villosa, activates the insulin pathway through inhibition of PTPases (2009) Acta Pharm. Sin., 30, pp. 333-345; Yamazaki, H., Nakazawa, T., Sumilat, D.A., Takahashi, O., Ukai, K., Takahashi, S., Namikoshi, M., Euryspongins A�C, three new unique sesquiterpenes from a marine sponge Euryspongia sp (2013) Bioorgan. Med. Chem. Lett., 23, pp. 2151-2154; Liang, L., Kurt�n, T., M�ndi, A., Gao, L.X., Li, J., Zhang, W., Guo, Y.W., Sarsolenane and Capnosane Diterpenes from the Hainan Soft Coral Sarcophyton trocheliophorum Marenzeller as PTP1B Inhibitors (2014) Eur. J. Org. Chem., pp. 1841-1847; Liang, L.F., Gao, L.X., Li, J., Taglialatela-Scafati, O., Guo, Y.W., Cembrane diterpenoids from the soft coral Sarcophyton trocheliophorum Marenzeller as a new class of PTP1B inhibitors (2013) Bioorg. Med. Chem. Lett., 21, pp. 5076-5080; Piao, S.J., Jiao, W.H., Yang, F., Yi, Y.H., Di, Y.T., Han, B.N., Lin, H.W., New Hippolide Derivatives with Protein Tyrosine Phosphatase 1B Inhibitory Activity from the Marine Sponge Hippospongia lachne (2014) Mar. Drugs, 12, pp. 4096-4109. , CrossRef PubMed; Seo, C., HanYim, J., Lee, H.K., Oh, H., PTP1B inhibitory secondary metabolites from the Antarctic lichen Lecidella carpathica (2011) Mycology, 2, pp. 18-23; Xue, D.G., Mao, S.C., Yu, X.Q., Guo, Y.W., Isomalabaricane triterpenes with potent protein-tyrosine phosphatase 1B (PTP1B) inhibition from the Hainan sponge Stelletta sp (2013) Biochem. Syst. Ecol., 49, pp. 101-106; Fouad, M., Edrada, R.A., Ebel, R., Wray, V., M�ller, W.E.G., Lin, W.H., Proksch, P., Cytotoxic Isomalabaricane Triterpenes from the Marine Sponge Rhabdastrella globostellata (2006) J. Nat. Prod., 69, pp. 211-218. , CrossRef PubMed; Lee, D.S., Jang, J.H., Ko, W., Kim, K.S., Sohn, J.H., Kang, M.S., Ahn, J.S., Oh, H., PTP1B inhibitory and anti-inflammatory effects of secondary metabolites isolated from the marine-derived fungus Penicillium sp. JF-55 (2013) Mar. Drugs, 11, pp. 1409-1426. , CrossRef PubMed; Sohn, J.H., Lee, Y.R., Lee, D.S., Kim, Y.C., Oh, H., PTP1B inhibitory secondary metabolites from marine-derived fungal strains Penicillium spp. And Eurotium sp (2013) J. Microbiol. Biotechnol., 23, pp. 1206-1211. , CrossRef PubMed; Debbab, A., Aly, A.H., Lin, W.H., Proksch, P., Bioactive compounds from marine bacteria and fungi (2010) Microb. Biotechnol., 3, pp. 544-563. , CrossRef PubMed; Seo, C., Sohn, J.H., Oh, H., Kim, B.Y., Ahn, J.S., Isolation of the protein tyrosine phosphatase 1B inhibitory metabolite from the marine-derived fungus Cosmospora sp. SF-5060 (2009) Bioorgan. Med. Chem. Lett., 19, pp. 6095-6097; Jung, H.A., Islam, M.N., Lee, C.M., Jeong, H.O., Chung, H.Y., Woo, H.C., Choi, J.S., Promising antidiabetic potential of fucoxanthin isolated from the edible brown algae Eisenia bicyclis and Undaria pinnatifida (2012) Fish. Sci., 78, pp. 1321-1329; Maeda, H., Hosokawa, M., Sashima, T., Miyashita, K., Dietary combination of fucoxanthin and fish oil attenuates the weight gain of white adipose tissue and decreases blood glucose in obese/diabetic KK-Ay mice (2007) J. Agric. Food Chem., 55, pp. 7701-7706; Peng, J., Yuan, J.P., Wu, C.F., Wang, J.H., Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: Metabolism and bioactivities relevant to human health (2011) Mar. Drugs, 9, pp. 1806-1828. , CrossRef PubMed; Ingebrigtsen, R.A., Hansen, E., Andersen, J.H., Eilertsen, H.C., Light and temperature effects on bioactivity in diatoms (2015) J. Appl. Phycol., 28, pp. 939-950. , CrossRef PubMed; Lauritano, C., Andersen, J.H., Hansen, E., Albrigtsen, M., Escalera, L., Esposito, F., Helland, K., Ianora, A., Bioactivity screening of microalgae for antioxidant, anti-inflammatory, anticancer, anti-diabetes and antibacterial activities (2016) Front. Mar. Sci; Lee, H.J., Kim, Y.A., Lee, J.I., Lee, B.J., Seo, Y.W., Screening of Korean marine plants extracts for inhibitory activity on protein tyrosine phosphatase 1B (2007) J. Appl. Biol. Chem., 50, pp. 74-77; Ali, M.Y., Kim, D.H., Seong, S.H., Kim, H.R., Jung, H.A., Choi, J.S., ?-Glucosidase and Protein Tyrosine Phosphatase 1B Inhibitory Activity of Plastoquinones from Marine Brown Alga Sargassum serratifolium (2017) Mar. Drugs, 15, p. 368. , CrossRef PubMed; Nu�o, K., Villarruel-Lopez, A., Puebla-P�rez, A.M., Romero-Velarde, E., Puebla-Mora, A.G., Ascencio, F., Effects of the marine microalgae Isochrysis galbana and Nannochloropsis oculata in diabetic rats (2013) J. Funct. Foods, 5, pp. 106-115; Diagnosis and classification of diabetes mellitus (2009) Diabetes Care, , American Diabetes Association. CrossRef; Cheng, A., Dube, N., Gu, F., Tremblay, M.L., Coordinated action of protein tyrosine phosphatases in insulin signal transduction (2002) Eur. J. Biochem., 269, pp. 1050-1059; Fantus, I.G., Deragon, G., Lai, R., Tang, S., Modulation of insulin action by vanadate: Evidence of a role for phosphotyrosine phosphatase activity to alter cellular signaling (1995) Mol. Cell. Biochem., 153, pp. 103-112; Fantus, I.G., Tsiani, E., Multifunctional actions of vanadium compounds on insulin signaling pathways: Evidence for preferential enhancement of metabolic versus mitogenic effects (1998) Mol. Cell. Biochem., 182, pp. 109-119; Meyerovitch, J., Farfel, Z., Sack, J., Shechter, Y., Characterization and mode of action, Oral administration of vanadate normalizes blood glucose levels in streptozotocin-treated rats (1987) J. Biol. Chem., 262, pp. 6658-6662; Meyerovitch, J., Backer, J., Kahn, C.R., Hepatic phosphotyrosine phosphatase activity and its alterations in diabetic rats (1989) J. Clin. Investig., 84, pp. 976-983; Myers, M.P., Andersen, J.N., Cheng, A., Tremblay, M.L., Horvath, C.M., Parisien, J.P., Salmeen, A., Tonks, N.K., TYK2 and JAK2 are substrates of protein-tyrosine phosphatase 1B (2001) J. Biol. Chem., 276, pp. 47771-47774; Cheng, A., Uetani, N., Simoncic, P.D., Chaubey, V.P., Lee-Loy, A., McGlade, C.J., Kennedy, B.P., Tremblay, M.L., Attenuation of leptin action and regulation of obesity by protein tyrosine phosphatase 1B (2002) Dev. Cell, 2, pp. 497-503; Zabolotny, J.M., Bence-Hanulec, K.K., Stricker-Krongrad, A., Haj, F., Wang, Y., Minokoshi, Y., Kim, Y.B., Kahn, B.B., PTP1B regulates leptin signal transduction in vivo (2002) Dev. Cell, 2, pp. 489-495; Ahmad, F., Considine, R.V., Bauer, T.L., Ohannesian, J.P., Marco, C.C., Goldstein, B.J., Improved sensitivity to insulin in obese subjects following weight loss is accompanied by reduced protein-tyrosine phosphatases in adipose tissue (1997) Metabolism, 46, pp. 1140-1145; Cheung, A., Kusari, J., Jansen, D., Bandyopadhyay, D., Kusari, A., Bryer-Ash, M., Marked impairment of protein tyrosine phosphatase 1B activity in adipose tissue of obese subjects with and without type 2 diabetes mellitus (1999) J. Lab. Clin. Med., 134, pp. 115-123; Wu, X., Hardy, V.E., Joseph, J.I., Jabbour, S., Mahadev, K., Zhu, L., Goldstein, B.J., Protein�tyrosine phosphatase activity in human adipocytes is strongly correlated with insulin-stimulated glucose uptake and is a target of insulin-induced oxidative inhibition (2003) Metabolism, 52, pp. 705-712; Brown-Shimer, S., Johnson, K.A., Lawrence, J.B., Johnson, C., Bruskin, A., Green, N.R., Hill, D.E., Molecular cloning and chromosome mapping of the human gene encoding protein phosphotyrosyl phosphatase 1B (1990) Proc. Natl. Acad. Sci. USA, 87, pp. 5148-5152
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description:
Loading...
Thumbnail Image
Name:
molecules-23-03334.pdf
Size:
9.67 MB
Format:
Adobe Portable Document Format
Description: