Spatiotemporal dynamics of Bacillus anthracis under climate change: a machine learning approach

dc.AffiliationOctober University for modern sciences and Arts MSA
dc.contributor.authorSameh M. H. Khalaf
dc.contributor.authorMonerah S. M. Alqahtani
dc.contributor.authorYousef A. Selim
dc.contributor.authorKenoz O. Elsayed
dc.contributor.authorHager A. Bendary
dc.date.accessioned2025-11-02T14:40:25Z
dc.date.issued2025-10-14
dc.descriptionSJR 2024 1.172 Q1 H-Index 259
dc.description.abstractThis study examines the spatiotemporal dynamics of Bacillus anthracis, the causative agent of anthrax, under climate change scenarios using advanced machine learning techniques. Climate change is increasingly recognized as a critical factor influencing the distribution and transmission dynamics of infectious diseases, particularly those reliant on environmental reservoirs. Our research employs Maximum Entropy (Maxent) modeling to forecast the current global distribution of B. anthracis based on climatic factors and to predict future habitat suitability under various Coupled Model Intercomparison Project Phase 5 (CMIP5) scenarios (RCP-2.6 and RCP-8.5) for the 2050’s and 2070’s. We identify high-risk areas where climate change may enhance the suitability for B. anthracis, emphasizing the need for proactive monitoring and early-warning systems. The findings indicate potential shifts in anthrax-endemic zones, with new regions becoming conducive to the establishment of B. anthracis due to the changing climate. Our results demonstrate the applicability of machine learning in predicting disease risk, providing a framework for public health preparedness in light of evolving environmental challenges. These insights are critical for developing targeted surveillance strategies and mitigating the introduction of zoonotic diseases in a warming environment. Copyright © 2025 Khalaf, Alqahtani, Selim, Elsayed and Bendary.
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=21100226442&tip=sid&clean=0
dc.identifier.citationKhalaf, S. M., Alqahtani, M. S., Selim, Y. A., Elsayed, K. O., & Bendary, H. A. (2025). Spatiotemporal dynamics of bacillus anthracis under climate change: A machine learning approach. Frontiers in Microbiology, 16. https://doi.org/10.3389/fmicb.2025.1659876
dc.identifier.doihttps://doi.org/10.3389/fmicb.2025.1659876
dc.identifier.otherhttps://doi.org/10.3389/fmicb.2025.1659876
dc.identifier.urihttps://repository.msa.edu.eg/handle/123456789/6577
dc.language.isoen_US
dc.publisherFrontiers Media SA
dc.relation.ispartofseriesFrontiers in Microbiology ; Volume 16 , Article number 1659876
dc.subjectBacillus anthracis
dc.subjectclimate change
dc.subjectecological niche
dc.subjectepidemiology
dc.subjectspecies distribution modeling
dc.titleSpatiotemporal dynamics of Bacillus anthracis under climate change: a machine learning approach
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
fmicb-16-1659876.pdf
Size:
10.23 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
51 B
Format:
Item-specific license agreed upon to submission
Description: