Modulation of laccase transcriptome during biodegradation of naphthalene by white rot fungus Pleurotus ostreatus

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorElhusseiny S.M.
dc.contributor.authorAmin H.M.
dc.contributor.authorShebl R.I.
dc.contributor.otherDepartment of Microbiology and Immunology
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherAhram Canadian University (ACU)
dc.contributor.other4th Industrial Area
dc.contributor.other6th of October City
dc.contributor.otherCairo
dc.contributor.other12566
dc.contributor.otherEgypt; Department of Microbiology and Immunology
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherModern Sciences and Arts University (MSA)
dc.contributor.other6th of October City
dc.contributor.otherCairo
dc.contributor.otherEgypt
dc.date.accessioned2020-01-09T20:40:37Z
dc.date.available2020-01-09T20:40:37Z
dc.date.issued2019
dc.descriptionScopus
dc.descriptionMSA Google Scholar
dc.description.abstractBiodegradation of polycyclic aromatic hydrocarbons (PAHs) using Pleurotus ostreatus was investigated in the current study along with the expression levels of laccase genes involved in biodegradation under variable conditions. Biodegradation of PAHs (naphthalene, anthracene, and 1,10-phenanthroline) was detected spectrophotometrically. Recorded data revealed that biodegradation of the tested PAHs was time dependent. Elevated level of naphthalene biodegradation (86.47%) was observed compared to anthracene (27.87%) and 1,10-phenanthroline (24.51%) within 3�days post incubation. Naphthalene was completely degraded within 5�days. Further incubation enhanced the biodegradation of both anthracene and 1,10-phenanthroline until reaches 93.69% and 92.00% biodegradation of the initial concentration within an incubation period of 11 and 14�days, respectively. Naphthalene was selected as a PAH model. HPLC and thin layer chromatography of naphthalene biodegradation products at time intervals proposed that naphthalene was first degraded to ?- and ?-naphthol which was further metabolized to salicylic and benzoic acid. The metabolic pathway of naphthalene degradation by this fungus was elucidated based on the detected metabolites. The expression profile of six laccase isomers was evaluated using real-time PCR. The transcriptome of the fungal laccase isomers recorded higher levels of transcription under optimized fermentation conditions especially in presence of both naphthalene and Tween 80. The accumulation of such useful metabolites from the biodegradation of PAH pollutants recommended white rot fungus as a potential candidate for production of platform chemicals from PAH wastes. � 2018, Springer Nature Switzerland AG.en_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=19762&tip=sid&clean=0
dc.identifier.doihttps://doi.org/10.1007/s10123-018-00041-5
dc.identifier.doiPubMed ID 30810987
dc.identifier.issn11396709
dc.identifier.otherhttps://doi.org/10.1007/s10123-018-00041-5
dc.identifier.otherPubMed ID 30810987
dc.identifier.urihttps://t.ly/y6Mn5
dc.language.isoEnglishen_US
dc.publisherSpringeren_US
dc.relation.ispartofseriesInternational Microbiology
dc.relation.ispartofseries22
dc.subjectBiodegradationen_US
dc.subjectPleurotus ostreatusen_US
dc.subjectPolycyclic aromatic hydrocarbonsen_US
dc.subjectWhite rot fungusen_US
dc.subjectlaccaseen_US
dc.subjectnaphthaleneen_US
dc.subjectnaphthalene derivativeen_US
dc.subjectpolycyclic aromatic hydrocarbonen_US
dc.subjectbiosynthesisen_US
dc.subjectbiotransformationen_US
dc.subjectenzymologyen_US
dc.subjectgene expression profilingen_US
dc.subjectgeneticsen_US
dc.subjectmetabolismen_US
dc.subjectPleurotusen_US
dc.subjectspectrophotometryen_US
dc.subjecttime factoren_US
dc.subjectBiotransformationen_US
dc.subjectGene Expression Profilingen_US
dc.subjectLaccaseen_US
dc.subjectMetabolic Networks and Pathwaysen_US
dc.subjectNaphthalenesen_US
dc.subjectPleurotusen_US
dc.subjectPolycyclic Aromatic Hydrocarbonsen_US
dc.subjectSpectrophotometryen_US
dc.subjectTime Factorsen_US
dc.titleModulation of laccase transcriptome during biodegradation of naphthalene by white rot fungus Pleurotus ostreatusen_US
dc.typeArticleen_US
dcterms.isReferencedByAbdel-Shafy, H.I., Mansour, M.S., A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation (2016) Egypt J Pet, 25, pp. 107-123; Ant�zar-Ladislao, B., Lopez-Real, J., Beck, A.J., Investigation of organic matter dynamics during in-vessel composting of an aged coal�tar contaminated soil using fluorescence excitation�emission spectroscopy (2006) Chemosphere, 64, pp. 839-847; Balachandran, C., Duraipandiyan, V., Balakrishna, K., Ignacimuthu, S., Petroleum and polycyclic aromatic hydrocarbons (PAHs) degradation and naphthalene metabolism in Streptomyces sp.(ERI-CPDA-1) isolated from oil contaminated soil (2012) Bioresour Technol, 112, pp. 83-90; Bestetti, G., Di Gennaro, P., Galli, E., Leoni, B., Pelizzoni, F., Sello, G., Bianchi, D., Bioconversion of substituted naphthalenes to the corresponding salicylic acids (1994) Appl Microbiol Biotechnol, 40, pp. 791-793; Bhattacharya, S., Das, A., Prashanthi, K., Palaniswamy, M., Angayarkanni, J., Mycoremediation of Benzo [a] pyrene by Pleurotus ostreatus in the presence of heavy metals and mediators (2014) 3 Biotech, 4, pp. 205-211; Bisht, S., Pandey, P., Bhargava, B., Sharma, S., Kumar, V., Sharma, K.D., Bioremediation of polyaromatic hydrocarbons (PAHs) using rhizosphere technology (2015) Braz J Microbiol, 46, pp. 7-21; Castanera, R., P�rez, G., Omarini, A., Alfaro, M., Pisabarro, A.G., Faraco, V., Amore, A., Ram�rez, L., Transcriptional and enzymatic profiling of Pleurotus ostreatus laccase genes in submerged and solid-state fermentation cultures (2012) Appl Environ Microbiol, 78, pp. 4037-4045; D�Souza-Ticlo, D., Garg, S., Raghukumar, C., Effects and interactions of medium components on laccase from a marine-derived fungus using response surface methodology (2009) Mar Drugs, 7, pp. 672-688; El-Batal, A.I., ElKenawy, N.M., Yassin, A.S., Amin, M.A., Laccase production by Pleurotus ostreatus and its application in synthesis of gold nanoparticles (2015) Biotechnol Rep, 5, pp. 31-39; Elhusseiny, S.M., Amin, H.M., Shebl, R.I., Mathematical modelling for optimization of naphthalene degradation by Pleurotus ostreatus (2017) Egypt J Biotechnol, 55, pp. 46-61; Fathepure, B.Z., Recent studies in microbial degradation of petroleum hydrocarbons in hypersaline environments (2015) The Proceedings from Halophiles 2013. the International Congress on Halophilic Microorganisms. Frontiers Media SA, p. 35; Furuno, S., P�zolt, K., Rabe, C., Neu, T.R., Harms, H., Wick, L.Y., Fungal mycelia allow chemotactic dispersal of polycyclic aromatic hydrocarbon-degrading bacteria in water-unsaturated systems (2010) Environ Microbiol, 12, pp. 1391-1398; Garc�a-Delgado, C., Jim�nez-Ayuso, N., Frutos, I., G�rate, A., Eymar, E., Cadmium and lead bioavailability and their effects on polycyclic aromatic hydrocarbons biodegradation by spent mushroom substrate (2013) Environ Sci Pollut Res, 20, pp. 8690-8699; Gasecka, M., Drzewiecka, K., Stachowiak, J., Siwulski, M., Golinski, P., Sobieralski, K., Golak, I., Degradation of polycyclic aromatic hydrocarbons (PAHs) by spent mushroom substrates of Agaricus bisporus and Lentinula edodes (2012) Acta Sci Pol-Hortoru, 11, pp. 39-46; Ghosal, D., Ghosh, S., Dutta, T.K., Ahn, Y., Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): A review (2016) Front Microbiol, 7; Giardina, P., Faraco, V., Pezzella, C., Piscitelli, A., Vanhulle, S., Sannia, G., Laccases: a never-ending story (2010) Cell Mol Life Sci, 67, pp. 369-385; Gratia, E., Weekers, F., Margesin, R., D�Amico, S., Thonart, P., Feller, G., Selection of a cold-adapted bacterium for bioremediation of wastewater at low temperatures (2009) Extremophiles, 13, pp. 763-768; Hadibarata, T., Yusoff, A.R., Aris, A., Kristanti, R.A., Identification of naphthalene metabolism by white rot fungus Armillaria sp. F022 (2012) J Environ Sci, 24, pp. 728-732; Hadibarata, T., Teh, Z.C., Zubir, M.M., Khudhair, A.B., Yusoff, A.R., Salim, M.R., Hidayat, T., Identification of naphthalene metabolism by white rot fungus Pleurotus eryngii (2013) Bioprocess Biosyst Eng, 36, pp. 1455-1461; Haritash, A., Kaushik, C., Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review (2009) J Hazard Mater, 169, pp. 1-15; Hwang, S.S., Choi, H.T., Song, H.G., Biodegradation of endocrine-disrupting phthalates by Pleurotus ostreatus (2008) J Microbiol Biotechnol, 18, pp. 767-772; Jacques, R.J., Okeke, B.C., Bento, F.M., Teixeira, A.S., Peralba, M.C., Camargo, F.A., Microbial consortium bioaugmentation of a polycyclic aromatic hydrocarbons contaminated soil (2008) Bioresour Technol, 99, pp. 2637-2643; Karp, S.G., Faraco, V., Amore, A., Birolo, L., Giangrande, C., Soccol, V.T., Pandey, A., Soccol, C.R., Characterization of laccase isoforms produced by Pleurotus ostreatus in solid state fermentation of sugarcane bagasse (2012) Bioresour Technol, 114, pp. 735-739; Meckenstock, R.U., Annweiler, E., Michaelis, W., Richnow, H.H., Schink, B., Anaerobic naphthalene degradation by a sulfate-reducing enrichment culture (2000) Appl Environ Microbiol, 66, pp. 2743-2747; Patel, H., Gupte, A., Gupte, S., Effect of different culture conditions and inducers on production of laccase by a basidiomycete fungal isolate Pleurotus ostreatus HP-1 under solid state fermentation (2009) BioResources, 4, pp. 268-284; Pezzella, C., Lettera, V., Piscitelli, A., Giardina, P., Sannia, G., Transcriptional analysis of Pleurotus ostreatus laccase genes (2013) Appl Microbiol Biotechnol, 97, pp. 705-717; Piscitelli, A., Pezzella, C., Giardina, P., Faraco, V., Sannia, G., Heterologous laccase production and its role in industrial applications (2010) Bioeng Bugs, 1, pp. 254-264; Piscitelli, A., Giardina, P., Lettera, V., Pezzella, C., Sannia, G., Faraco, V., Induction and transcriptional regulation of laccases in fungi (2011) Curr Genomics, 12, pp. 104-112; Pozdnyakova, N.N., Involvement of the ligninolytic system of white-rot and litter-decomposing fungi in the degradation of polycyclic aromatic hydrocarbons (2012) Biotechnol Res Int, 2012, pp. 1-20; Pozdnyakova, N.N., Rodakiewicz-Nowak, J., Turkovskaya, O.V., Haber, J., Oxidative degradation of polyaromatic hydrocarbons and their derivatives catalyzed directly by the yellow laccase from Pleurotus ostreatus D1 (2006) J Mol Catal B Enzym, 41, pp. 8-15; Pratheebaa, P., Periasamy, R., Palvannan, T., (2013) Factorial Design for Optimization of Laccase Production from Pleurotus Ostreatus IMI 395545 and Laccase Mediated Synthetic Dye Decolorization; Sartoros, C., Yerushalmi, L., B�ron, P., Guiot, S.R., Effects of surfactant and temperature on biotransformation kinetics of anthracene and pyrene (2005) Chemosphere, 61, pp. 1042-1050; Silva, I.S., Grossman, M., Durrant, L.R., Degradation of polycyclic aromatic hydrocarbons (2�7 rings) under microaerobic and very-low-oxygen conditions by soil fungi (2009) Int Biodeterior Biodegrad, 63, pp. 224-229; Tinoco, R., Acevedo, A., Galindo, E., Serrano-Carre�n, L., Increasing Pleurotus ostreatus laccase production by culture medium optimization and copper/lignin synergistic induction (2011) J Ind Microbiol Biotechnol, 38, pp. 531-540; Ukiwe, L.N., Egereonu, U.U., Njoku, P.C., Nwoko, C.I., Allinor, J.I., Polycyclic aromatic hydrocarbons degradation techniques: a review (2013) Int J Chem, 5, p. 43; Yao, B., Ji, Y., Lignin biodegradation with laccase-mediator systems (2014) Front Energy Res, 2, p. 12; Yuan, S., Wei, S., Chang, B., Biodegradation of polycyclic aromatic hydrocarbons by a mixed culture (2000) Chemosphere, 41, pp. 1463-1468
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description:
Loading...
Thumbnail Image
Name:
Elhusseiny2019_Article_ModulationOfLaccaseTranscripto.pdf
Size:
951.39 KB
Format:
Adobe Portable Document Format
Description: