Studying the influence of formulation and process variables on Vancomycin-loaded polymeric nanoparticles as potential carrier for enhanced ophthalmic delivery

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorYousry C.
dc.contributor.authorElkheshen S.A.
dc.contributor.authorEl-laithy H.M.
dc.contributor.authorEssam T.
dc.contributor.authorFahmy R.H.
dc.contributor.otherDepartment of Pharmaceutics and Industrial Pharmacy
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherCairo University
dc.contributor.otherKasr El-Aini St
dc.contributor.otherCairo
dc.contributor.otherEgypt; Department of Pharmaceutics and Pharmaceutical Technology
dc.contributor.otherFaculty of Pharmaceutical Sciences and Pharmaceutical Industries
dc.contributor.otherFuture University in Egypt
dc.contributor.otherCairo
dc.contributor.otherEgypt; Department of Pharmaceutics and Industrial Pharmacy
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherUniversity of Modern Science and Art
dc.contributor.otherCairo
dc.contributor.otherEgypt; Department of Microbiology and Immunology
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherCairo University
dc.contributor.otherKasr El-Aini St
dc.contributor.otherCairo
dc.contributor.otherEgypt; Department of Pharmaceutics
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherAhram Canadian University
dc.contributor.other6th of October City
dc.contributor.otherCairo
dc.contributor.otherEgypt
dc.date.accessioned2020-01-09T20:41:22Z
dc.date.available2020-01-09T20:41:22Z
dc.date.issued2017
dc.descriptionScopus
dc.description.abstractOcular topically applied Vancomycin (VCM) suffers poor bioavailability due to its high molecular weight and hydrophilicity. In the present investigation, VCM-loaded polymeric nanoparticles (PNPs) were developed aiming to enhance its ocular bioavailability through prolonging its release pattern and ophthalmic residence. PNPs were prepared utilizing double emulsion (W/O/O), solvent evaporation technique. 23 � 41 full factorial design was applied to evaluate individual and combined influences of polymer type, Eudragit� RS100, sonication time, and Span�80 concentration on PNPs particle size, encapsulation efficiency, and zeta potential. Further, the optimized formulae were incorporated in 1% Carbopol�-based gel. In-vivo evaluation of the optimized formulae was performed via Draize test followed by microbiological susceptibility testing on albino rabbits. Results revealed successful formulation of VCM-loaded PNPs was achieved with particle sizes reaching 155 nm and up to 88% encapsulation. Draize test confirmed the optimized formulae as non-irritating and safe for ophthalmic administration. Microbiological susceptibility testing confirmed prolonged residence, higher Cmax. with more than two folds increment in the AUC(0.25�24) of VCM-PNPs over control groups. Thus, VCM-loaded PNPs represent promising carriers with superior achievements for enhanced Vancomycin ophthalmic delivery over the traditional use of commercially available VCM parenteral powder after constitution into a solution by the ophthalmologists. � 2017 Elsevier B.V.en_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=21331&tip=sid&clean=0
dc.identifier.doihttps://doi.org/10.1016/j.ejps.2017.01.013
dc.identifier.doiPubMed ID 28089661
dc.identifier.issn9280987
dc.identifier.otherhttps://doi.org/10.1016/j.ejps.2017.01.013
dc.identifier.otherPubMed ID 28089661
dc.identifier.urihttps://t.ly/DXrml
dc.language.isoEnglishen_US
dc.publisherElsevier B.V.en_US
dc.relation.ispartofseriesEuropean Journal of Pharmaceutical Sciences
dc.relation.ispartofseries100
dc.subjectDraize testen_US
dc.subjectMicrobiological susceptibility testingen_US
dc.subjectOcular infectionen_US
dc.subjectPoly (D,L-lactide- coglycolide) (PLGA)en_US
dc.subjectPolycaprolactone (PCL)en_US
dc.subjectVancomycinen_US
dc.subjectcarbomeren_US
dc.subjecteudragiten_US
dc.subjectnanoparticleen_US
dc.subjectpolymeren_US
dc.subjectsolventen_US
dc.subjectsorbitan oleateen_US
dc.subjectvancomycinen_US
dc.subjectacrylic acid resinen_US
dc.subjectantiinfective agenten_US
dc.subjectdrug carrieren_US
dc.subjecteudragit rsen_US
dc.subjectgelen_US
dc.subjectnanoparticleen_US
dc.subjectvancomycinen_US
dc.subjectanimal tissueen_US
dc.subjectarea under the curveen_US
dc.subjectArticleen_US
dc.subjectcontrolled studyen_US
dc.subjectdrug bioavailabilityen_US
dc.subjectdrug delivery systemen_US
dc.subjectdrug formulationen_US
dc.subjectdrug releaseen_US
dc.subjectemulsionen_US
dc.subjectencapsulationen_US
dc.subjectfactorial designen_US
dc.subjectin vivo studyen_US
dc.subjectmaximum plasma concentrationen_US
dc.subjectnonhumanen_US
dc.subjectparticle sizeen_US
dc.subjectpriority journalen_US
dc.subjectultrasounden_US
dc.subjectzeta potentialen_US
dc.subjectanimalen_US
dc.subjectchemistryen_US
dc.subjectdrug effectsen_US
dc.subjectdrug formulationen_US
dc.subjectgelen_US
dc.subjectintraocular drug administrationen_US
dc.subjectpHen_US
dc.subjectrabbits and haresen_US
dc.subjectStaphylococcus aureusen_US
dc.subjectAcrylic Resinsen_US
dc.subjectAdministration, Ophthalmicen_US
dc.subjectAnimalsen_US
dc.subjectAnti-Bacterial Agentsen_US
dc.subjectDrug Carriersen_US
dc.subjectDrug Compoundingen_US
dc.subjectDrug Liberationen_US
dc.subjectGelsen_US
dc.subjectHydrogen-Ion Concentrationen_US
dc.subjectNanoparticlesen_US
dc.subjectRabbitsen_US
dc.subjectStaphylococcus aureusen_US
dc.subjectVancomycinen_US
dc.titleStudying the influence of formulation and process variables on Vancomycin-loaded polymeric nanoparticles as potential carrier for enhanced ophthalmic deliveryen_US
dc.typeArticleen_US
dcterms.isReferencedByAbdelbary, G., Ocular ciprofloxacin hydrochloride mucoadhesive chitosan-coated liposomes (2011) Pharm. Dev. Technol., 16, pp. 44-56; Abou el Ela, A.E.S.F., El Khatib, M.M., Formulation and evaluation of new long acting metoprolol tartrate ophthalmic gels (2014) Saudi Pharm. J.; Aksungur, P., Demirbilek, M., Denkbas, E.B., Vandervoort, J., Ludwig, A., Unlu, N., Development and characterization of cyclosporine A loaded nanoparticles for ocular drug delivery: cellular toxicity, uptake, and kinetic studies (2011) J. Control. Release, 151, pp. 286-294; Alvarado, H.L., Abrego, G., Gardu�o-Ramirez, M.L., Clares, B., Calpena, A.C., Garc�a, M.L., Design and optimization of oleanolic/ursolic acid-loaded nanoplatforms for ocular anti-inflammatory applications (2015) Nanomedicine: NBM11, pp. 521-530; Apu, A.S., Pathan, A.H., Kibria, G., Jalil, R.U., Investigation of in vitro release kinetic study of carbamazepine from Eudragit RS PO and RL PO matrix tablets (2009) Trop. J. Pharm. Res., 8, pp. 145-152; Ara�jo, J., Gonzalez, E., Egea, M.A., Garcia, M.L., Souto, E.B., Nanomedicines for ocular NSAIDs: safety on drug delivery (2009) Nanomedicine: NBM, 5, pp. 394-401; Ara�jo, J., Vega, E., Lopes, C., Egea, M.A., Garcia, M.L., Souto, E.B., Effect of polymer viscosity on physicochemical properties and ocular tolerance of FB-loaded PLGA nanospheres (2009) Colloids Surf. B: Biointerfaces, 72, pp. 48-56; Barbault-foucher, S., Gref, R., Russo, P., Guechot, J., Bochot, A., Design of poly-?-caprolactone nanospheres coated with bioadhesive hyaluronic acid for ocular delivery (2002) J. Control. Release, 83, pp. 365-375; Bourlais, C.A.L., Treupel-Acar, L., Rhodes, C.T., Sado, P.A., Leverge, R., New ophthalmic drug delivery systems (1995) Drug Dev. Ind. Pharm., 21, pp. 19-59; Cheung, R.P.F., Dipiro, J.T., Vancomycin: an update (1986) Pharmacotherapy, 6, pp. 153-169; Ciombor, D.M., Jaklenec, A., Liu, A.Z., Thanos, C., Rahman, N., Weston, P., Aaron, R., Mathiowitz, E., Encapsulation of BSA using a modified W/O/O emulsion solvent removal method (2006) J. Microencapsul., 23, pp. 183-194; Dangi, R.S., Shakya, S., Preparation, optimization and characterization of PLGA nanoparticle (2013) Int. J. Pharm. LIFE Sci., 4, pp. 2810-2818; Das, S., Suresh, P.K., Desmukh, R., Design of Eudragit RL 100 nanoparticles by nanoprecipitation method for ocular drug delivery (2010) Nanomedicine: NBM, 6, pp. 318-323; Dash, S., Murthy, P.N., Nath, L., Chowdhury, P., Kinetic modeling on drug release from controlled drug delivery systems (2010) Acta Pol. Pharm. - Drug Res., 67, pp. 217-223; Dillen, K., Vandervoort, J., Van Den Mooter, G., Ludwig, A., Evaluation of ciprofloxacin-loaded Eudragit� RS100 or RL100/PLGA nanoparticles (2006) Int. J. Pharm., 314, pp. 72-82; Draize, J.H., Woodard, G., Calvery, H.O., Methods for the study of irritation and toxicity of substances applied topically to the skin and mucous membranes (1944) J. Pharmacol. Exp. Ther., 82, pp. 377-390; El-Laithy, H.M., Shoukry, O., Mahran, L.G., Novel sugar esters proniosomes for transdermal delivery of vinpocetine: preclinical and clinical studies (2011) Eur. J. Pharm. Biopharm., 77, pp. 43-55; Elzubair, A., Nelson, C., Suarez, M., The physical characterization of a thermoplastic polymer for endodontic obturation (2006) J. Dent., 34, pp. 784-789; Felt, O., Furrer, P., Mayer, J.M., Plazonnet, B., Buri, P., Gurny, R., Topical use of chitosan in ophthalmology: tolerance assessment and evaluation of precorneal retention (1999) Int. J. Pharm., 180, pp. 185-193; Gandhi, A., Jana, S., Sen, K.K., In-vitro release of acyclovir loaded Eudragit RLPO(�) nanoparticles for sustained drug delivery (2014) Int. J. Biol. Macromol., 67, pp. 478-482; Gaudana, R., Ananthula, H.K., Parenky, A., Mitra, A.K., Ocular drug delivery (2010) AAPS J., 12, pp. 348-360; Gavini, E., Chetoni, P., Cossu, M., Alvarez, M.G., Saettone, M.F., Giunchedi, P., PLGA microspheres for the ocular delivery of a peptide drug, vancomycin using emulsification/spray-drying as the preparation method: in vitro/in vivo studies (2004) Eur. J. Pharm. Biopharm., 57, pp. 207-212; Gershbein, L.L., McDonald, J.E., Evaluation of the corneal irritancy of test shampoos and detergents in various animal species (1977) Food Cosmet. Toxicol., 15, pp. 131-134; Giannavola, C., Bucolo, C., Maltese, A., Paolino, D., Vandelli, M.A., Puglisi, G., Lee, V.H.L., Fresta, M., Influence of preparation conditions on acyclovir-loaded poly-D,L-lactic acid nanospheres and effect of PEG coating on ocular drug bioavailability (2003) Pharm. Res., 20, pp. 584-590; Gil, E.C., Colarte, A.I., Bataille, B., Caraballo, I., Estimation of the percolation thresholds in lobenzarit disodium native dextran matrix tablets (2007) AAPS PharmSciTech, 8, pp. E1-E8; Gupta, H., Aqil, M., Khar, R.K., Ali, A., Bhatnagar, A., Mittal, G., Sparfloxacin-loaded PLGA nanoparticles for sustained ocular drug delivery (2010) Nanomedicine: NBM, 6, pp. 324-333; Hachicha, W., Kodjikian, L., Fessi, H., Preparation of vancomycin microparticles: importance of preparation parameters (2006) Int. J. Pharm., 324, pp. 176-184; Hoffart, V., Ubrich, N., Simonin, C., Babak, V., Vigneron, C., Hoffman, M., Lecompte, T., Maincent, P., Low molecular weight heparin-loaded polymeric nanoparticles: formulation, characterization, and release characteristics (2002) Drug Dev. Ind. Pharm., 28, pp. 1091-1099; Hopfenberg, H.B., Permeability of Plastic Films and Coatings to Gases, Vapors and Liquids (1974); Hughes, J.A., Persky, A.M., Guo, X., Ghosh, T.K., Solubility (2004) Theory and Practice of Contemporary Pharmaceutics, pp. 56-81. , K. Tapash B.R.J. Ghosh CRC press; J�rvinen, K., J�rvinen, T., Urtti, A., Ocular absorption following topical delivery (1995) Adv. Drug Deliv. Rev., 16, pp. 3-19; Jiao, Y., Ubrich, N., Marchand-Arvier, M., Vigneron, C., Hoffman, M., Lecompte, T., Maincent, P., In vitro and in vivo evaluation of oral heparin-loaded polymeric nanoparticles in rabbits (2002) Circulation, 105, pp. 230-235; Kaur, I.P., Garg, A., Singla, A.K., Aggarwal, D., Vesicular systems in ocular drug delivery: an overview (2004) Int. J. Pharm., 269, pp. 1-14; Khangtragool, A., Ausayakhun, S., Leesawat, P., Laokul, C., Molloy, R., Chitosan as an ocular drug delivery vehicle for vancomycin (2011) J. Appl. Polym. Sci., 122, pp. 3160-3167; Klang, V., Valenta, C., Matsko, N.B., Electron microscopy of pharmaceutical systems (2013) Micron, 44, pp. 45-74; Korsmeyer, R.W., Gumy, R., Doelker, E., Buri, P., Peppas, N.A., Mechanisms of solute release from porous hydrophilic polymers (1983) Int. J. Pharm., 15, pp. 25-35; Loveymi, B.D., Jelvehgari, M., Zakeri-Milani, P., Valizadeh, H., Design of vancomycin RS-100 nanoparticles in order to increase the intestinal permeability (2012) Adv. Pharm. Bull., 2, pp. 43-56; Moosa, R.M., Choonara, Y.E., du Toit, L.C., Tomar, L.K., Tyagi, C., Kumar, P., Carmichael, T.R., Pillay, V., In vivo evaluation and in-depth pharmaceutical characterization of a rapidly dissolving solid ocular matrix for the topical delivery of timolol maleate in the rabbit eye model (2014) Int. J. Pharm., 466, pp. 296-306; M�ller, R.H., Vuleta, G.M., Kova?, A.B., Keck, C.M., Physicochemical and engineering aspects solid lipid nanoparticles (SLN) stabilized with polyhydroxy surfactants: preparation, characterization and physical stability investigation (2014) Colloids Surfaces A Physicochem. Eng. Asp., 444, pp. 15-25; Nagarwal, R.C., Kant, S., Singh, P.N., Maiti, P., Pandit, J.K., Polymeric nanoparticulate system: a potential approach for ocular drug delivery (2009) J. Control. Release, 136, pp. 2-13; Nordstrom, P., Formation of Polymeric Nanoparticles Encapsulating and Releasing a New Hydrophobic Cancer Drug (2011), Chalmers University of Technology; Pignatello, R., Bucolo, C., Spedalieri, G., Maltese, A., Puglisi, G., Flurbiprofen-loaded acrylate polymer nanosuspensions for ophthalmic application (2002) Biomaterials, 23, pp. 3247-3255; Prasertmanakit, S., Praphairaksit, N., Chiangthong, W., Muangsin, N., Ethyl cellulose microcapsules for protecting and controlled release of folic acid (2009) AAPS PharmSciTech, 10, pp. 1104-1112; Ramesh, D.V., Development of a process for microencapsulation of a model protein with poly (e-caprolactone) using a modified W/O/O technique (2009) Soc. Biomater. Artif. Organs, 23, pp. 46-54; Rao, S., Kupfer, Y., Pagala, M., Chapnick, E., Tessler, S., Systemic absorption of oral vancomycin in patients with clostridium difficile infection (2011) Scand. J. Infect. Dis., 43, pp. 386-388; Redhead, H.M., Davis, S.S., Illum, L., Drug delivery in poly(lactide-co-glycolide) nanoparticles surface modified with poloxamer 407 and poloxamine 908: in vitro characterisation and in vivo evaluation (2001) J. Control. Release, 70, pp. 353-363; Rehage, G., Ernst, O., Fuhrmann, J., Fickian and non-Fickian diffusion in high polymer systems (1970) Univ. DEGLI Stud. DI TORINO, 49, p. 208; Ritger, P.L., Peppas, N.A., A simple equation for description of solute release I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs (1987) J. Control. Release, 5, pp. 23-36; Roggeband, R., York, M., Pericoi, M., Braun, W., Eye irritation responses in rabbit and man after single applications of equal volumes of undiluted model liquid detergent products (2000) Food Chem. Toxicol., 38, pp. 727-734; Song, C., Labhasetwar, V., Murphy, H., Qu, X., Humphrey, W., Shebuski, R., Levy, R., Formulation and characterization of biodegradable nanoparticles for intravascular local drug delivery (1997) J. Control. Release, 43, pp. 197-212; Souli, M., Kopsinis, G., Kavouklis, E., Gabriel, L., Giamarellou, H., Vancomycin levels in human aqueous humour after intravenous and subconjunctival administration (2001) Int. J. Antimicrob. Agents, 18, pp. 239-243; Stevanovic, M., Pavlovic, V., Petkovic, J., Filipic, M., Uskokovic, D., ROS-inducing potential, influence of different porogens and in vitro degradation of poly (D,L-lactide-co-glycolide)-based material (2011) Express Polym Lett, 5, pp. 996-1008; Tao, Y., Lu, Y., Sun, Y., Gu, B., Lu, W., Pan, J., Development of mucoadhesive microspheres of acyclovir with enhanced bioavailability (2009) Int. J. Pharm., 378, pp. 30-36; Ubrich, N., Maincent, P., Recent advances in heparin delivery (2006) Microencapsulation: Methods and Industrial Applications, pp. 481-508. , S. Benita CRC press USA; Wilhelmus, K.R., The draize eye test (2001) Surv. Ophthalmol., 45, pp. 493-515; Wu, J., Wu, L.I.N., Xu, X., Xu, X., Yin, X., Chen, Y., Hu, Y., Microspheres Made by w/o/o Emulsion Method With Reduced Initial Burst for Long-Term Delivery of Endostar, a Novel Recombinant Human Endostatin (2009), 98, pp. 2051-2058; Yousry, C., Fahmy, R.H., Essam, T., El-laithy, H.M., Elkheshen, S.A., Nanoparticles as tool for enhanced ophthalmic delivery of vancomycin: a multidistrict-based microbiological study, solid lipid nanoparticles formulation and evaluation (2016) Drug Dev. Ind. Pharm., 42, pp. 1752-1762; Zakeri-Milani, P., Loveymi, B.D., Jelvehgari, M., Valizadeh, H., The characteristics and improved intestinal permeability of vancomycin PLGA-nanoparticles as colloidal drug delivery system (2013) Colloids Surf. B: Biointerfaces, 103, pp. 174-181; Zarif, M., Afidah, A., Abdullah, J., Shaiza, A., Physicochemical characterization of vancomycin and its complexes with ?-cyclodextrin (2012) Biomed. Res. - India, 23, pp. 513-520; Zhang, W., Li, X., Ye, T., Chen, F., Sun, X., Kong, J., Yang, X., Li, S., Design, characterization, and in vitro cellular inhibition and uptake of optimized genistein-loaded NLC for the prevention of posterior capsular opacification using response surface methodology (2013) Int. J. Pharm., 454, pp. 354-366; Upadhyay, U.S., Patel, V.A., Patel, J.K., Upadhyay, U.M., Saluja, A.K., Fabrication of solid lipid nanoparticles containing tamoxifen citrate and impact of process parameters on formulation (2012) Int. J. Biol. Pharm. Res., 3, pp. 422-430
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
avatar_scholar_128.png
Size:
2.73 KB
Format:
Portable Network Graphics
Description: