Design, synthesis, molecular modeling and biological evaluation of novel 2,3-dihydrophthalazine-1,4-dione derivatives as potential anticonvulsant agents
dc.Affiliation | October University for modern sciences and Arts (MSA) | |
dc.contributor.author | El-Helby A.G.A. | |
dc.contributor.author | Ayyad R.R. | |
dc.contributor.author | Sakr H.M. | |
dc.contributor.author | Abdelrahim A.S. | |
dc.contributor.author | El-Adl K. | |
dc.contributor.author | Sherbiny F.S. | |
dc.contributor.author | Eissa I.H. | |
dc.contributor.author | Khalifa M.M. | |
dc.contributor.other | Pharmaceutical Chemistry Department | |
dc.contributor.other | Faculty of Pharmacy (Boys) | |
dc.contributor.other | Al-Azhar University | |
dc.contributor.other | Cairo | |
dc.contributor.other | 11884 | |
dc.contributor.other | Egypt; Pharmaceutical Chemistry Department | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | Delta University for Science and Technology | |
dc.contributor.other | Gamasa | |
dc.contributor.other | Dakahlia | |
dc.contributor.other | Egypt; Organic Chemistry Department | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | Al-Azhar University (Boys) | |
dc.contributor.other | Cairo | |
dc.contributor.other | 11884 | |
dc.contributor.other | Egypt; Organic Chemistry Department | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | October University for Modern Science and Arts (MSA) | |
dc.contributor.other | 6th October City | |
dc.contributor.other | 11787 | |
dc.contributor.other | Egypt | |
dc.date.accessioned | 2020-01-09T20:41:23Z | |
dc.date.available | 2020-01-09T20:41:23Z | |
dc.date.issued | 2017 | |
dc.description | Scopus | |
dc.description.abstract | In view of their expected anticonvulsant activity, some novel derivatives of 2,3-dihydrophthalazine-1,4-dione 4�22 were designed, synthesized and evaluated using pentylenetetrazole (PTZ) and picrotoxin as convulsion-inducing models. Moreover, the most active compounds were tested against electrical induced convulsion using maximal electroshock (MES) models of seizures. Most of the tested compounds showed considerable anticonvulsant activity in at least one of the anticonvulsant tests. Compounds 13 and 14g were proved to be the most potent compounds of this series with relatively low toxicity in the median lethal dose test when compared with the reference drug. Molecular modeling studies were done to verify the biological activity. The obtained results showed that the most potent compounds could be useful as a template for future design, optimization, and investigation to produce more active analogues. 2016 Elsevier B.V. | en_US |
dc.description.uri | https://www.scimagojr.com/journalsearch.php?q=24642&tip=sid&clean=0 | |
dc.identifier.doi | https://doi.org/10.1016/j.molstruc.2016.10.052 | |
dc.identifier.doi | PubMed ID : | |
dc.identifier.issn | 222860 | |
dc.identifier.other | https://doi.org/10.1016/j.molstruc.2016.10.052 | |
dc.identifier.other | PubMed ID : | |
dc.identifier.uri | https://t.ly/0E37l | |
dc.language.iso | English | en_US |
dc.publisher | Elsevier B.V. | en_US |
dc.relation.ispartofseries | Journal of Molecular Structure | |
dc.relation.ispartofseries | 1130 | |
dc.subject | 2,3-Dihydrophthalazine-1,4-dione | en_US |
dc.subject | Anticonvulsant | en_US |
dc.subject | GABA-A | en_US |
dc.subject | Molecular modeling | en_US |
dc.subject | Bioactivity | en_US |
dc.subject | Drug dosage | en_US |
dc.subject | Molecular modeling | en_US |
dc.subject | 2,3-Dihydrophthalazine-1,4-dione | en_US |
dc.subject | Active compounds | en_US |
dc.subject | Anticonvulsant | en_US |
dc.subject | Anticonvulsant activity | en_US |
dc.subject | Biological evaluation | en_US |
dc.subject | Median lethal dose | en_US |
dc.subject | Molecular modeling studies | en_US |
dc.subject | Potent compounds | en_US |
dc.subject | Drug products | en_US |
dc.title | Design, synthesis, molecular modeling and biological evaluation of novel 2,3-dihydrophthalazine-1,4-dione derivatives as potential anticonvulsant agents | en_US |
dc.type | Article | en_US |
dcterms.isReferencedBy | Sarro, G.D., Gitto, R., Russo, E., Ibbadu, G.F., Barreca, M.L., Luca, L.D., Chimirri, A., AMPA receptor antagonists as potential anticonvulsant drugs (2005) Curr. Top. Med. Chem., 5 (1), pp. 31-42; Kwan, P., Sander, J., The natural history of epilepsy: an epidemiological view (2004) J. Neurol. Neurosurg. Psychiatry, 75 (10), pp. 1376-1381; Nelson, L.P., Savelli-Castillo, I., New antiepileptic agents (2004) Pediatr. Dent., 26 (1), pp. 58-62; Da Settimo, A., Primofiore, G., Da Settimo, F., Marini, A.M., Novellino, E., Greco, G., Gesi, M., Lucacchini, A., N'-Phenylindol-3-ylglyoxylohydrazide derivatives: synthesis, structure-activity relationships, molecular modeling studies, and pharmacological action on brain benzodiazepine receptors (1998) J. Med. Chem., 41 (20), pp. 3821-3830; Huang, Q., He, X., Ma, C., Liu, R., Yu, S., Dayer, C.A., Wenger, G.R., Cook, J.M., Pharmacophore/receptor models for GABAA/BzR subtypes (?1?3?2, ?5?3?2, and ?6?3?2) via a comprehensive ligand-mapping approach (2000) J. Med. Chem., 43 (1), pp. 71-95; He, X., Zhang, C., Cook, J., Model of the BzR binding site: correlation of data from site-directed mutagenesis and the pharmacophore/receptor model (2001) Med. Chem. Res., 10 (5), pp. 269-308; Zhang, W., Koehler, K., Zhang, P., Cook, J., Development of a comprehensive pharmacophore model for the benzodiazepine receptor (1995) Drug Des. Discov., 12 (3), pp. 193-248; El Helby, A.A., Amin, M., Ibrahim, M.K., Ayyad, R.R., Synthesis and Pharmacological activity of some new derivatives of 1,4 (2H,3H) Phthalazindione (2002) Azhar J. Pharm. Sci., 29, pp. 36-44; Zayed, M., Ayyad, R., Evaluation of the anticonvulsant activity of 6-(4-chlorophenyoxy)-tetrazolo [5, 1-a] phthalazine in various experimental seizure models in mice (2012) Arzneimittelforschung, 62, pp. 1-5; Russell, M.G., Carling, R.W., Atack, J.R., Bromidge, F.A., Cook, S.M., Hunt, P., Isted, C., Mitchinson, A., Discovery of functionally selective 7, 8, 9, 10-Tetrahydro-7, 10-ethano-1, 2, 4-triazolo [3, 4-a] phthalazines as gabaa receptor agonists at the ?3 subunit (2005) J. Med. Chem., 48 (5), pp. 1367-1383; Rollas, S., Kkgzel, S.G., Biological activities of hydrazone derivatives (2007) Molecules, 12 (8), pp. 1910-1939; Ayyad, R.R., Mansour, A., Synthesis and biological evaluation of novel iodophthalazindione derivatives as anticonvulsant agents (2004) Azhar J. Pharm. Sci., 50, pp. 1-6; Woodbury, L.A., Davenport, V.D., Design and use of a new electroshock seizure apparatus, and analysis of factors altering seizure threshold and pattern (1952) Arch. Int. de pharmacodynamie de Ther., 92 (1), pp. 97-107; White, H.S., General principles: experimental selection, quantification, and evaluation of antiepileptic drugs (1995) Antiepileptic drugs, pp. 99-110; Baviskar, B., Shiradkar, M., Khadabadi, S., Deore, S., Bothara, K., Synthesis of thiazolyltriazole substituted azetidinones as antimicrobial agents (2011) Indian J. Chem. Part B Org. Incl. Med., 50 (3), p. 321; El-Kerdawy, M.M., El-Bendary, E.R., Alaa, A.-M., El-Wasseef, D.R., El-Aziz, N.I.A., Synthesis and pharmacological evaluation of novel fused thiophene derivatives as 5-HT 2A receptor antagonists: molecular modeling study (2010) Eur. J. Med. Chem., 45 (5), pp. 1805-1820; Warren, G.L., Andrews, C.W., Capelli, A.-M., Clarke, B., LaLonde, J., Lambert, M.H., Lindvall, M., Senger, S., A critical assessment of docking programs and scoring functions (2006) J. Med. Chem., 49 (20), pp. 5912-5931; Ci, S., Ren, T., Su, Z., Investigating the putative binding-mode of GABA and diazepam within GABAA receptor using molecular modeling (2008) Protein J., 27 (2), pp. 71-78; Richter, L., de Graaf, C., Sieghart, W., Varagic, Z., Mrzinger, M., de Esch, I.J., Ecker, G.F., Ernst, M., Diazepam-bound GABAA receptor models identify new benzodiazepine binding-site ligands (2012) Nat. Chem. Biol., 8 (5), pp. 455-464; Cody, V., Schwalbe, C.H., Structural characteristics of antifolate dihydrofolate reductase enzyme interactions (2006) Crystallogr. Rev., 12 (4), pp. 301-333; Zhao, Y.H., Abraham, M.H., Le, J., Hersey, A., Luscombe, C.N., Beck, G., Sherborne, B., Cooper, I., Rate-limited steps of human oral absorption and QSAR studies (2002) Pharm. Res., 19 (10), pp. 1446-1457; Lipinski, C.A., Lombardo, F., Dominy, B.W., Feeney, P.J., Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings (2012) Adv. Drug Deliv. Rev., 64, pp. 4-17; Allinger, N.L., Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms (1977) J. Am. Chem. Soc., 99 (25), pp. 8127-8134; Yang, S.-Y., Pharmacophore modeling and applications in drug discovery: challenges and recent advances (2010) Drug Discov. Today, 15 (11), pp. 444-450; Ekins, S., Mestres, J., Testa, B., In silico pharmacology for drug discovery: methods for virtual ligand screening and profiling (2007) Br. J. Pharmacol., 152 (1), pp. 9-20; Ekins, S., Mestres, J., Testa, B., In silico pharmacology for drug discovery: applications to targets and beyond (2007) Br. J. Pharmacol., 152 (1), pp. 21-37; Vijayan, R., Ghoshal, N., Structural basis for ligand recognition at the benzodiazepine binding site of GABA A ?3 receptor, and pharmacophore-based virtual screening approach (2008) J. Mol. Graph. Model., 27 (3), pp. 286-298; Hansch, C., Bjrkroth, J., Leo, A., Hydrophobicity and central nervous system agents: on the principle of minimal hydrophobicity in drug design (1987) J. Pharm. Sci., 76 (9), pp. 663-687; Lien, E., Tong, G., Chou, J., Lien, L., Structural requirements for centrally acting drugs I (1973) J. Pharm. Sci., 62 (2), pp. 246-250; Lien, E.J., Liao, R.C., Shinouda, H., Quantitative structure-activity relationships and dipole moments of anticonvulsants and CNS depressants (1979) J. Pharm. Sci., 68 (4), pp. 463-465; Ulrich, R.M., Miller, J., Threshold estimation in two-alternative forced-choice (2AFC) tasks: the SpearmanKrber method (2004) Percept. Psychophys., 66, p. 517; Crivori, P., Cruciani, G., Carrupt, P.-A., Testa, B., Predicting blood-brain barrier permeation from three-dimensional molecular structure (2000) J. Med. Chem., 43 (11), pp. 2204-2216; Dunham, N., Miya, T., A note on a simple apparatus for detecting neurological deficit in rats and mice (1957) J. Am. Pharm. Assoc., 46 (3), pp. 208-209; Li, Z., Huang, H., Sun, H., Jiang, H., Liu, H., Microwave-assisted efficient and convenient synthesis of 2, 4 (1 H, 3 H)-quinazolinediones and 2-thioxoquinazolines (2008) J. Comb. Chem., 10 (3), pp. 484-486; Rogawski, M.A., Point counterpoint: do interictal spikes trigger seizures or protect against them? (2006) Epilepsy Curr., 6 (6), pp. 197-198; Lscher, W., Nolting, B., The role of technical, biological and pharmacological factors in the laboratory evaluation of anticonvulsant drugs. IV (1991) Prot. indices Epilepsy Res., 9 (1), pp. 1-10; Zappala, M., Grasso, S., Micale, N., Zuccala, G., Menniti, F.S., Ferreri, G., De Sarro, G., De Micheli, C., 1-Aryl-6, 7-methylenedioxy-3H-quinazolin-4-ones as anticonvulsant agents (2003) Bioorg. Med. Chem. Lett., 13 (24), pp. 4427-4430 | |
dcterms.source | Scopus |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- avatar_scholar_256.png
- Size:
- 6.31 KB
- Format:
- Portable Network Graphics
- Description: